Quasi-equilibrium chemical evolution in starless cores

Author:

Rawlings J M C1ORCID,Keto E2,Caselli P3

Affiliation:

1. Department of Physics and Astronomy, University College London , Gower Street, London, WC1E 6BT , UK

2. Harvard-Smithsonian Center for Astrophysics , 160 Garden St, Cambridge, MA 02420 , USA

3. Max-Planck-Institut für extraterrestrische Physik , P.O. Box 1312, D-85741 Garching , Germany

Abstract

ABSTRACT The chemistry of H2O, CO, and other small molecular species in an isolated pre-stellar core, L1544, has been assessed in the context of a comprehensive gas-grain chemical model, coupled to an empirically constrained physical/dynamical model. Our main findings are (i) that the chemical network remains in near equilibrium as the core evolves towards star formation and the molecular abundances change in response to the evolving physical conditions. The gas-phase abundances at any time can be calculated accurately with equilibrium chemistry, and the concept of chemical clocks is meaningless in molecular clouds with similar conditions and dynamical time-scales, and (ii) A comparison of the results of complex and simple chemical networks indicates that the abundances of the dominant oxygen and carbon species, H2O, CO, C, and C+ are reasonably approximated by simple networks. In chemical equilibrium, the time-dependent differential terms vanish, and a simple network reduces to a few algebraic equations. This allows rapid calculation of the abundances most responsible for spectral line radiative cooling in molecular clouds with long dynamical time-scales. The dust ice mantles are highly structured and the ice layers retain a memory of the gas-phase abundances at the time of their deposition. A complex (gas-phase and gas-grain) chemical structure therefore exists, with cosmic-ray induced processes dominating in the inner regions. The inferred H2O abundance profiles for L1544 require that the outer parts of the core and also any medium exterior to the core are essentially transparent to the interstellar radiation field.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3