I. The effect of symmetric and spatially varying equilibria and flow on MHD wave modes: slab geometry

Author:

Skirvin S J1ORCID,Fedun V1,Verth G2

Affiliation:

1. Plasma Dynamics Group, Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield S3 7RH, UK

2. Plasma Dynamics Group, Department of Mathematics and Statistics, The University of Sheffield, Sheffield S3 7RH, UK

Abstract

ABSTRACT Realistic theoretical models of magnetohydrodynamic wave propagation in the different solar magnetic configurations are required to explain observational results, allowing magnetoseismology to be conducted and provide more accurate information about local plasma properties. The numerical approach described in this paper allows a dispersion diagram to be obtained for any arbitrary symmetric magnetic slab model of solar atmospheric features. This proposed technique implements the shooting method to match necessary boundary conditions on continuity of displacement and total pressure of the waveguide. The algorithm also implements fundamental physical knowledge of the sausage and kink modes such that both can be investigated. The dispersion diagrams for a number of analytic cases that model magnetohydrodynamic waves in a magnetic slab were successfully reproduced. This work is then extended by considering density structuring modelled as a series of Gaussian profiles and a sinc(x) function. A further case study investigates properties of MHD wave modes in a coronal slab with a non-uniform background plasma flow, for which the governing equations are derived. It is found that the dispersive properties of slow body modes are more greatly altered than those of fast modes when any equilibrium inhomogeneity is increased, including background flow. The spatial structure of the eigenfunctions is also modified, introducing extra nodes and points of inflexion that may be of interest to observers.

Funder

Science and Technology Facilities Council

Royal Society

European Union

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3