Secular outflows from 3D MHD hypermassive neutron star accretion disc systems

Author:

Fahlman Steven1ORCID,Fernández Rodrigo1ORCID,Morsink Sharon1ORCID

Affiliation:

1. Department of Physics, University of Alberta , Edmonton, AB T6G 2E1, Canada

Abstract

ABSTRACT Magnetized hypermassive neutron stars (HMNSs) have been proposed as a way for neutron star mergers to produce high electron fraction, high-velocity ejecta, as required by kilonova models to explain the observed light curve of GW170817. The HMNS drives outflows through neutrino energy deposition and mechanical oscillations, and raises the electron fraction of outflows through neutrino interactions before collapsing to a black hole (BH). Here, we perform 3D numerical simulations of HMNS–torus systems in ideal magnetohydrodynamics, using a leakage/absorption scheme for neutrino transport, the nuclear APR equation of state, and Newtonian self-gravity, with a pseudo-Newtonian potential added after BH formation. Due to the uncertainty in the HMNS collapse time, we choose two different parametrized times to induce collapse. We also explore two initial magnetic field geometries in the torus, and evolve the systems until the outflows diminish significantly ($\sim\!\! 1\!\! - \!\!2\ \mathrm{s}$). We find bluer, faster outflows as compared to equivalent BH–torus systems, producing M ∼ 10−3 M⊙ of ejecta with Ye ≥ 0.25 and v ≥ 0.25c by the simulation end. Approximately half the outflows are launched in disc winds at times $t\lesssim 500 \ \mathrm{ms}$, with a broad distribution of electron fractions and velocities, depending on the initial condition. The remaining outflows are thermally driven, characterized by lower velocities and electron fractions. Nucleosynthesis with tracer particles shows patterns resembling solar abundances in all models. Although outflows from our simulations do not match those inferred from two-component modelling of the GW170817 kilonova, self-consistent multidimensional detailed kilonova models are required to determine whether our outflows can power the blue kilonova.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3