Spectroscopic r-process Abundance Retrieval for Kilonovae. II. Lanthanides in the Inferred Abundance Patterns of Multicomponent Ejecta from the GW170817 Kilonova

Author:

Vieira NicholasORCID,Ruan John J.ORCID,Haggard DarylORCID,Ford Nicole M.ORCID,Drout Maria R.ORCID,Fernández RodrigoORCID

Abstract

Abstract In kilonovae, freshly synthesized r-process elements imprint features on optical spectra, as observed in AT2017gfo, the counterpart to the GW170817 binary neutron star merger. However, measuring the r-process compositions of the merger ejecta is computationally challenging. Vieira et al. introduced Spectroscopic r-process Abundance Retrieval for Kilonovae (SPARK), a software tool to infer elemental abundance patterns of the ejecta and associate spectral features with particular species. Previously, we applied SPARK to the 1.4-day spectrum of AT2017gfo and inferred its abundance pattern for the first time, characterized by electron fraction Y e = 0.31, a substantial abundance of strontium, and a dearth of lanthanides and heavier elements. This ejecta is consistent with wind from a remnant hypermassive neutron star and/or accretion disk. We now extend our inference to spectra at 2.4 and 3.4 days and test the need for multicomponent ejecta, where we stratify the ejecta in composition. The ejecta at 1.4 and 2.4 days is described by the same single blue component. At 3.4 days, a new redder component with lower Y e = 0.16 and a significant abundance of lanthanides emerges. This new redder component is consistent with dynamical ejecta and/or neutron-rich ejecta from a magnetized accretion disk. As expected from photometric modeling, this component emerges as the ejecta expands, the photosphere recedes, and the earlier bluer component dims. At 3.4 days, we find an ensemble of lanthanides, with the presence of cerium most concrete. This presence of lanthanides has important implications for the contribution of kilonovae to the r-process abundances observed in the Universe.

Funder

Gouvernement du Canada ∣ Natural Sciences and Engineering Research Council of Canada

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3