The AGN–galaxy–halo connection: the distribution of AGN host halo masses to z = 2.5

Author:

Aird James12ORCID,Coil Alison L3

Affiliation:

1. Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ, UK

2. School of Physics & Astronomy, University of Leicester, University Road, Leicester LE1 7RJ, UK

3. Center for Astrophysics and Space Sciences, Department of Physics, University of California, 9500 Gilman Dr. MC 0424, La Jolla, CA 92093-0424, USA

Abstract

ABSTRACT It is widely reported, based on clustering measurements of observed active galactic nucleus (AGN) samples, that AGNs reside in similar mass host dark matter haloes across the bulk of cosmic time, with log $\mathcal {M}/\mathcal {M}_{\odot }\sim 12.5\!-\!13.0$ to z ∼ 2.5. We show that this is due in part to the AGN fraction in galaxies rising with increasing stellar mass, combined with AGN observational selection effects that exacerbate this trend. Here, we use AGN specific accretion rate distribution functions determined as a function of stellar mass and redshift for star-forming and quiescent galaxies separately, combined with the latest galaxy–halo connection models, to determine the parent and subhalo mass distribution function of AGNs to various observational limits. We find that while the median (sub)halo mass of AGNs, $\approx 10^{12}\mathcal {M}_{\odot }$, is fairly constant with luminosity, specific accretion rate, and redshift, the full halo mass distribution function is broad, spanning several orders of magnitude. We show that widely used methods to infer a typical dark matter halo mass based on an observed AGN clustering amplitude can result in biased, systematically high host halo masses. While the AGN satellite fraction rises with increasing parent halo mass, we find that the central galaxy is often not an AGN. Our results elucidate the physical causes for the apparent uniformity of AGN host haloes across cosmic time and underscore the importance of accounting for AGN selection biases when interpreting observational AGN clustering results. We further show that AGN clustering is most easily interpreted in terms of the relative bias to galaxy samples, not from absolute bias measurements alone.

Funder

Science and Technology Facilities Council

University of California, San Diego

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3