The impact of AGN X-ray selection on the AGN halo occupation distribution

Author:

Powell M. C.ORCID,Krumpe M.,Coil A.ORCID,Miyaji T.ORCID

Abstract

Aims. The connection between active galactic nuclei (AGN) and their host dark matter halos provides powerful insights into how supermassive black holes (SMBHs) grow and coevolve with their host galaxies. Here we investigate the impact of observational AGN selection on the AGN halo occupation distribution (HOD) by forward-modeling AGN activity into cosmological N-body simulations. Methods. By assuming straightforward relationships between the SMBH mass, galaxy mass, and (sub)halo mass, as well as a uniform broken power law distribution of Eddington ratios, we find that luminosity-limited AGN samples result in biased HOD shapes. Results. While AGN defined by an Eddington ratio threshold produce AGN fractions that are flat across halo mass (unbiased by definition), luminosity-limited AGN fractions peak around galaxy-group-sized halo masses and then decrease with increasing halo mass. With higher luminosities, the rise of the AGN fraction starts at higher halo masses, the peak is shifted towards higher halo masses, and the decline at higher halo masses is more rapid. These results are consistent with recent HOD constraints from AGN clustering measurements, which find (1) characteristic halo mass scales of log MVir ∼ 12–13 [h−1M] and (2) a shallower rise of the number of satellite AGN with increasing halo mass than for the overall galaxy population. Thus the observational biases due to AGN selection can naturally explain the constant, characteristic halo mass scale inferred from large-scale AGN clustering amplitudes over a range of redshifts, as well as the measured inconsistencies between AGN and galaxy HODs. Conclusions. We conclude that AGN selection biases can have significant impacts on the inferred AGN HOD, and can therefore lead to possible misinterpretations of how AGN populate dark matter halos and the AGN-host galaxy connection.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3