Spectral variability of photospheric radiation due to faculae – II. Facular contrasts for cool main-sequence stars

Author:

Norris Charlotte M1,Unruh Yvonne C1ORCID,Witzke Veronika2,Solanki Sami K2,Krivova Natalie A2,Shapiro Alexander I2,Yeo Kok Leng2,Cameron Robert2,Beeck Benjamin2

Affiliation:

1. Department of Physics, Imperial College London , London SW7 2AZ , UK

2. Max Planck Institute for Solar System Research , Justus-von-Liebig-Weg 3, D-37077 Göttingen , Germany

Abstract

ABSTRACT Magnetic features on the surface of stars, such as spots and faculae, cause stellar spectral variability on time-scales of days and longer. For stars other than the Sun, the spectral signatures of faculae are poorly understood, limiting our ability to account for stellar pollution in exoplanet transit observations. Here we present the first facular contrasts derived from magnetoconvection simulations for K0, M0, and M2 main-sequence stars and compare them to previous calculations for G2 main-sequence stars. We simulate photospheres and immediate subsurface layers of main-sequence spectral types between K0 and M2, with different injected vertical magnetic fields (0 G, 100 G, 300 G, and 500 G) using MURaM, a 3D radiation-magnetohydrodynamics code. We show synthetic spectra and contrasts from the UV (300 nm) to the IR (10 000 nm) calculated using the ATLAS9 radiative transfer code. The calculations are performed for nine viewing angles to characterize the facular radiation across the disc. The brightness contrasts of magnetic regions are found to change significantly across spectral type, wavelength, and magnetic field strength, leading to the conclusion that accurate contrasts cannot be found by scaling solar values. This is due to features of different size, apparent structure and spectral brightness emerging in the presence of a given magnetic field for different spectral types.

Funder

STFC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3