Closeby Habitable Exoplanet Survey (CHES). I. Astrometric Noise and Planetary Detection Efficiency Due to Stellar Spots and Faculae

Author:

Bao Chunhui,Ji JianghuiORCID,Tan Dongjie,Chen GuoORCID,Huang Xiumin,Wang Su,Dong Yao

Abstract

Abstract The Closeby Habitable Exoplanet Survey (CHES) is dedicated to the astrometric exploration for habitable-zone Earth-like planets orbiting solar-type stars in close proximity, achieving unprecedented microarcsecond precision. Given the elevated precision, meticulous consideration of photocenter jitters induced by stellar activity becomes imperative. This study endeavors to model the stellar activity of solar-type stars, compute astrometric noise, and delineate the detection limits of habitable planets within the astrometric domain. Simulations were conducted for identified primary targets of CHES, involving the generation of simulated observed data for astrometry and photometry, accounting for the impact of stellar activity. Estimation of activity levels in our sample was achieved through chromospheric activity indices, revealing that over 90% of the stars exhibited photocenter jitters below 1 μas. Notably, certain proximate stars, such as α Cen A and B, displayed more discernible noise arising from stellar activity. Subsequent tests were performed to evaluate detection performance, unveiling that stellar activity tends to have a less pronounced impact on planetary detectability for the majority of the stars. Approximately 95% of the targets demonstrated a detection efficiency exceeding 80%. However, for several cold stars, e.g., HD 32450 and HD 21531, with the habitable zones close to the stars, a reduction in detection efficiency was observed. These findings offer invaluable insights into the intricate interplay between stellar activity and astrometric precision, significantly advancing our understanding in the search for habitable planets.

Funder

MOST ∣ NSFC ∣ Key Programme

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3