Modelling reflected polarized light from close-in giant exoplanet WASP-96b using PolHEx (Polarization of hot exoplanets)

Author:

Chubb Katy L12ORCID,Stam Daphne M3,Helling Christiane24,Samra Dominic2,Carone Ludmila2ORCID

Affiliation:

1. Centre for Exoplanet Science, University of St Andrews , North Haugh, St Andrews, KY16 9SS , UK

2. Space Research Institute, Austrian Academy of Sciences , Schmiedlstraße 6, A-8042 Graz , Austria

3. Leiden Observatory , Niels Bohrweg 2, 2333 CA Leiden , Netherlands

4. Fakultät für Mathematik, Physik und Geodäsie , TU Graz, Petersgasse 16, A-8010 Graz , Austria

Abstract

ABSTRACT We present the Polarization of Hot Exoplanets (PolHEx) code for modelling the total flux (F) and degree of linear Polarization (P) of light spectra reflected by close-in, tidally locked exoplanets. We use the output from a global climate model (GCM) combined with a kinetic cloud model of hot Jupiter WASP-96b as a base to investigate effects of atmospheric longitudinal-latitudinal inhomogeneities on these spectra. We model F and P-spectra as functions of wavelength and planet orbital phase for various model atmospheres. We find different materials and sizes of cloud particles to impact the reflected flux F, and particularly the linear Polarization state P. A range of materials are used to form inhomogeneous mixed-material cloud particles (Al2O3, Fe2O3, Fe2SiO4, FeO, Fe, Mg2SiO4, MgO, MgSiO3, SiO2, SiO, TiO2), with Fe2O3, Fe, and FeO the most strongly absorbing species. The cloud particles near the relatively cool morning terminator are expected to have smaller average sizes and a narrower size distribution than those near the warmer evening terminator, which leads to different reflected spectra at the respective orbital phases. We also find differences in the spectra of F and P as functions of orbital phase for irregularly or spherically shaped cloud particles. This work highlights the importance of including Polarization in models and future observations of the reflection spectra of exoplanets.

Funder

STFC

Austrian Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3