A solution to the proplyd lifetime problem

Author:

Winter Andrew J12ORCID,Clarke Cathie J2,Rosotti Giovanni P3ORCID,Hacar Alvaro3,Alexander Richard1ORCID

Affiliation:

1. Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK

2. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

3. Leiden Observatory, Leiden University, PO Box 9513, NL-2300-RA Leiden, the Netherlands

Abstract

ABSTRACT Protoplanetary discs (PPDs) in the Orion Nebula Cluster (ONC) are irradiated by UV fields from the massive star θ1C. This drives thermal winds, inducing mass-loss rates of up to $\dot{M}_\mathrm{wind}\sim 10^{-7}\, \mathrm{M}_\odot$ yr−1 in the ‘proplyds’ (ionized PPDs) close to the centre. For the mean age of the ONC and reasonable initial PPD masses, such mass-loss rates imply that discs should have been dispersed. However, $\sim 80{\,{\rm {per\, cent}}}$ of stars still exhibit a near-infrared excess, suggesting that significant circumstellar mass remains. This ‘proplyd lifetime problem’ has persisted since the discovery of photoevaporating discs in the core of the ONC by O’Dell & Wen (1994). In this work, we demonstrate how an extended period of star formation can solve this problem. Coupling N-body calculations and a viscous disc evolution model, we obtain high disc fractions at the present day. This is partly due to the migration of older stars outwards, and younger stars inwards such that the most strongly irradiated PPDs are also the youngest. We show how the disc mass distribution can be used to test the recent claims in the literature for multiple stellar populations in the ONC. Our model also explains the recent finding that host mass and PPD mass are only weakly correlated, in contrast with other regions of similar age. We conclude that the status of the ONC as the archetype for understanding the influence of environment on planet formation is undeserved; the complex star formation history (involving star formation episodes within ∼0.8 Myr of the present day) results in confusing signatures in the PPD population.

Funder

European Research Council

European Union’s Horizon 2020 research and innovation programme

Netherlands Organisation for Scientific Research

MINECO

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3