Kaleidoscope of irradiated disks: MUSE observations of proplyds in the Orion Nebula Cluster

Author:

Aru M.-L.ORCID,Maucó K.ORCID,Manara C. F.ORCID,Haworth T. J.ORCID,Facchini S.ORCID,McLeod A. F.ORCID,Miotello A.ORCID,Petr-Gotzens M. G.ORCID,Robberto M.ORCID,Rosotti G. P.ORCID,Vicente S.ORCID,Winter A.ORCID,Ansdell M.ORCID

Abstract

In the Orion Nebula Cluster (ONC), protoplanetary disks exhibit ionized gas clouds in the form of a striking teardrop shape as massive stars irradiate the disk material. We present the first spatially and spectrally resolved observations of 12 such objects, known as proplyds, using integral field spectroscopy observations performed with the Multi-Unit Spectroscopic Explorer (MUSE) instrument in Narrow Field Mode (NFM) on the Very Large Telescope (VLT). We present the morphology of the proplyds in seven emission lines and measure the radius of the ionization front (I-front) of the targets in four tracers, covering transitions of different ionization states for the same element. We also derive stellar masses for the targets. The measurements follow a consistent trend of increasing I-front radius for a decreasing strength of the far-UV radiation as expected from photoevaporation models. By analyzing the ratios of the I-front radii as measured in the emission lines of Hα, [O I] 6300 A, [O II] 7330 A, and [O III] 5007 A, we observe the ionization stratification, that is, the most ionized part of the flow being the furthest from the disk (and closest to the UV source). The ratios of ionization front radii scale in the same way for all proplyds in our sample regardless of the incident radiation. We show that the stratification can help constrain the densities near the I-front by using a 1D photoionization model. We derive the upper limits of photoevaporative mass-loss rates (loss) by assuming ionization equilibrium, and estimate values in the range 1.07–94.5 × 10−7 M yr−1, with loss values decreasing towards lower impinging radiation. We do not find a correlation between the mass-loss rate and stellar mass. The highest mass-loss rate is for the giant proplyd 244–440. These values of loss, combined with recent estimates of the disk mass with ALMA, confirm previous estimates of the short lifetime of these proplyds. This work demonstrates the potential of this MUSE dataset and offers a new set of observables to be used to test current and future models of external photoevaporation.

Funder

European Research Council

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3