Observational signatures of stellar explosions driven by relativistic jets

Author:

Eisenberg Moshe1,Gottlieb Ore2ORCID,Nakar Ehud1ORCID

Affiliation:

1. School of Physics and Astronomy, Tel Aviv University , Tel Aviv 69978, Israel

2. Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Physics & Astronomy, Northwestern University , Evanston, IL 60201, USA

Abstract

ABSTRACT The role of relativistic jets in unbinding the stellar envelope during a supernova (SN) associated with a gamma-ray burst (GRB) is unclear. To study that, we explore observational signatures of stellar explosions that are driven by jets. We focus on the final velocity distribution of the outflow in such explosions and compare its observational imprints to SN/GRB data. We find that jet-driven explosions produce an outflow with a flat distribution of energy per logarithmic scale of proper velocity. The flat distribution seems to be universal as it is independent of the jet and the progenitor properties that we explored. The velocity range of the flat distribution for typical GRB parameters is γβ ≈ 0.03–3, where γ is the outflow Lorentz factor and β is its dimensionless velocity. A flat distribution is seen also for collimated choked jets where the highest outflow velocity decreases with the depth at which the jet is choked. Comparison to observations of SN/GRBs strongly disfavors jets as the sole explosion source in these events. Instead, in SN/GRB the collapsing star seems to deposit its energy into two channels – a quasi-spherical (or wide angle) channel and a narrowly collimated one. The former carries most of the energy and is responsible for the SN sub-relativistic ejecta while the latter carries 0.01–0.1 of the total outflow energy and is the source of the GRB. Intriguingly, the same two channels, with a similar energy ratio, were seen in the binary neutron star merger GW170817, suggesting that similar engines are at work in both phenomena.

Funder

ERC

Israel Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3