Hydrodynamic Mixing of Accretion Disk Outflows in Collapsars: Implications for r-process Signatures

Author:

Barnes JenniferORCID,Duffell Paul C.ORCID

Abstract

Abstract The astrophysical environments capable of triggering heavy-element synthesis via rapid neutron capture (the r-process) remain uncertain. While binary neutron star mergers (NSMs) are known to forge r-process elements, certain rare supernovae (SNe) have been theorized to supplement—or even dominate—r-production by NSMs. However, the most direct evidence for such SNe, unusual reddening of the emission caused by the high opacities of r-process elements, has not been observed. Recent work identified the distribution of r-process material within the SN ejecta as a key predictor of the ease with which signals associated with r-process enrichment could be discerned. Though this distribution results from hydrodynamic processes at play during the SN explosion, thus far it has been treated only in a parameterized way. We use hydrodynamic simulations to model how disk winds—the alleged locus of r-production in rare SNe—mix with initially r-process-free ejecta. We study mixing as a function of the wind mass, wind duration, and the initial SN explosion energy, and find that it increases with the first two of these and decreases with the third. This suggests that SNe accompanying the longest long-duration gamma-ray bursts are promising places to search for signs of r-process enrichment. We use semianalytic radiation transport to connect hydrodynamics to electromagnetic observables, allowing us to assess the mixing level at which the presence of r-process material can be diagnosed from SN light curves. Analytic arguments constructed atop this foundation imply that a wind-driven r-process-enriched SN model is unlikely to explain standard energetic SNe.

Funder

Gordon and Betty Moore Foundation

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3