The density distribution of accreting cosmic filaments as shaped by Kelvin–Helmholtz instability

Author:

Vossberg Ann-Christine E1,Cantalupo Sebastiano1ORCID,Pezzulli Gabriele1ORCID

Affiliation:

1. Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland

Abstract

ABSTRACT Cosmic filaments play a crucial role in galaxy evolution, transporting gas from the intergalactic medium into galaxies. However, little is known about the efficiency of this process and whether the gas is accreted in a homogenous or clumpy way. Recent observations suggest the presence of broad gas density distributions in the circumgalactic medium, which could be related to the accretion of filaments. By means of two-dimensional high-resolution hydrodynamical simulations, we explore here the evolution of cold accreting filaments flowing through the hot circumgalactic medium (CGM) of high-z galaxies. We focus on the purely adiabatic case, not including cooling, gravity, or magnetic fields. In particular, we examine the non-linear effects of Kelvin–Helmholtz instability on the development of broad gas density distributions and on the formation of cold, dense clumps. We explore a large parameter space in the filament and perturbation properties, such as filament Mach number, initial perturbation wavelength, and thickness of the interface between the filament and the halo. We find that the time-averaged density distribution of the cold gas is qualitatively consistent with a skewed lognormal probability distribution function plus an additional component in the form of a high-density tail for high Mach numbers. Our results suggest a tight correlation between the accreting velocity and the maximum densities developing in the filament, which is consistent with the variance–Mach number relation for turbulence. Therefore, cosmological accretion could be a viable mechanism to produce turbulence and broad gas density distributions within the CGM.

Funder

Swiss National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3