Kelvin–Helmholtz instability in self-gravitating streams

Author:

Aung Han1,Mandelker Nir23ORCID,Nagai Daisuke12,Dekel Avishai4,Birnboim Yuval4ORCID

Affiliation:

1. Department of Physics, Yale University, New Haven, CT 06520, USA

2. Department of Astronomy, Yale University, PO Box 208101, New Haven, CT 06511, USA

3. Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany

4. Centre for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, 91904 Jerusalem , Israel

Abstract

ABSTRACT Self-gravitating gaseous filaments exist on many astrophysical scales, from sub-pc filaments in the interstellar medium to Mpc scale streams feeding galaxies from the cosmic web. These filaments are often subject to Kelvin–Helmholtz Instability (KHI) due to shearing against a confining background medium. We study the non-linear evolution of KHI in pressure-confined self-gravitating gas streams initially in hydrostatic equilibrium, using analytic models and hydrodynamic simulations, not including radiative cooling. We derive a critical line mass, or mass per unit length, as a function of the stream Mach number and density contrast with respect to the background, μcr(Mb, δc) ≤ 1, where μ = 1 is normalized to the maximal line mass for which initial hydrostatic equilibrium is possible. For μ < μcr, KHI dominates the stream evolution. A turbulent shear layer expands into the background and leads to stream deceleration at a similar rate to the non-gravitating case. However, with gravity, penetration of the shear layer into the stream is halted at roughly half the initial stream radius by stabilizing buoyancy forces, significantly delaying total stream disruption. Streams with μcr < μ ≤ 1 fragment and form round, long-lived clumps by gravitational instability (GI), with typical separations roughly eight times the stream radius, similar to the case without KHI. When KHI is still somewhat effective, these clumps are below the spherical Jeans mass and are partially confined by external pressure, but they approach the Jeans mass as μ → 1 and GI dominates. We discuss potential applications of our results to streams feeding galaxies at high redshift, filaments in the ISM, and streams resulting from tidal disruption of stars near the centres of massive galaxies.

Funder

Klaus Tschira Foundation

BSF

GIF

NSF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3