Numerical simulations of macrospicule jets under energy imbalance conditions in the solar atmosphere

Author:

González-Avilés J J1ORCID,Murawski K2ORCID,Srivastava A K3ORCID,Zaqarashvili T V456ORCID,González-Esparza J A7ORCID

Affiliation:

1. Cátedras CONACYT, SCIESMEX-LANCE, Instituto de Geofísica, Unidad Michoacán, Universidad Nacional Autónoma de México, 58190 Morelia, Michoacán, México

2. Institute of Physics, University of Maria Curie-Skłodowska, 5 M. Curie-Skłodowskiej Sq., PL-20-031 Lublin, Poland

3. Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, India

4. IGAM, Institute für Physik, University of Graz, Universitätsplatz 5, A-8010 Graz, Austria

5. Ilia State University, Cholokashvili ave 5/3, 0162 Tbilisi, Georgia

6. Abastumani Astrophysical Observatory, Mount Kanobili, 0301 Abastumani, Georgia

7. SCIESMEX-LANCE, Instituto de Geofísica, Unidad Michoacán, Universidad Nacional Autónoma de México, 58190 Morelia, Michoacán, México

Abstract

ABSTRACT Using numerical simulations, we study the effects of thermal conduction and radiative cooling on the formation and evolution of solar jets with some macrospicules features. We initially assume that the solar atmosphere is rarely in equilibrium through energy imbalance. Therefore, we test whether the background flows resulting from an imbalance between thermal conduction and radiative cooling influence the jets’ behaviour. In this particular scenario, we trigger the formation of the jets by launching a vertical velocity pulse localized at the upper chromosphere for the following test cases: (i) adiabatic case; (ii) thermal conduction case; (iii) radiative cooling case; and (iv) thermal conduction + radiative cooling case. According to the test results, the addition of the thermal conduction results in smaller and hotter jets than in the adiabatic case. On the other hand, the radiative cooling dissipates the jet after reaching the maximum height (≈5.5 Mm), making it shorter and colder than in the adiabatic and thermal conduction cases. Besides, the flow generated by the radiative cooling is more substantial than that caused by the thermal conduction. Despite the energy imbalance of the solar atmosphere background, the simulated jet shows morphological features of macrospicules. Furthermore, the velocity pulse steepens into a shock that propagates upward into a solar corona that maintains its initial temperature. The shocks generate the jets with a quasi-periodical behaviour that follows a parabolic path on time–distance plots consistent with macrospicule jets’ observed dynamics.

Funder

CONACYT

NCN

Austrian Science Fund

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3