The abundance and structure of subhaloes near the free streaming scale and their impact on indirect dark matter searches

Author:

Ishiyama Tomoaki1,Ando Shin’ichiro23

Affiliation:

1. Institute of Management and Information Technologies, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

2. GRAPPA Institute, University of Amsterdam, NL-1098 XH Amsterdam, the Netherlands

3. Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan

Abstract

ABSTRACT The free streaming motion of dark matter particles imprints a cutoff in the matter power spectrum and set the scale of the smallest dark matter halo. Recent cosmological N-body simulations have shown that the central density cusp is much steeper in haloes near the free streaming scale than in more massive haloes. Here, we study the abundance and structure of subhaloes near the free streaming scale at very high redshift using a suite of unprecedentedly large cosmological N-body simulations, over a wide range of the host halo mass. The subhalo abundance is suppressed strongly below the free streaming scale, but the ratio between the subhalo mass function in the cutoff and no cutoff simulations is well fitted by a single correction function regardless of the host halo mass and the redshift. In subhaloes, the central slopes are considerably shallower than in field haloes, however, are still steeper than that of the NFW profile. Contrary, the concentrations are significantly larger in subhaloes than haloes and depend on the subhalo mass. We compare two methods to extrapolate the mass–concentration relation of haloes and subhaloes to z = 0 and provide a new simple fitting function for subhaloes, based on a suite of large cosmological N-body simulations. Finally, we estimate the annihilation boost factor of a Milky-Way-sized halo to be between 1.8 and 6.2.

Funder

RIKEN Advanced Institute for Computational Science

National Astronomical Observatory of Japan

MEXT

JSPS

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3