Abstract
The presence of dark matter substructure will boost the signatures of dark matter annihilation. We review recent progress on estimates of this subhalo boost factor—a ratio of the luminosity from annihilation in the subhalos to that originating the smooth component—based on both numerical N-body simulations and semi-analytic modelings. Since subhalos of all the scales, ranging from the Earth mass (as expected, e.g., the supersymmetric neutralino, a prime candidate for cold dark matter) to galaxies or larger, give substantial contribution to the annihilation rate, it is essential to understand subhalo properties over a large dynamic range of more than twenty orders of magnitude in masses. Even though numerical simulations give the most accurate assessment in resolved regimes, extrapolating the subhalo properties down in sub-grid scales comes with great uncertainties—a straightforward extrapolation yields a very large amount of the subhalo boost factor of ≳100 for galaxy-size halos. Physically motivated theoretical models based on analytic prescriptions such as the extended Press-Schechter formalism and tidal stripping modeling, which are well tested against the simulation results, predict a more modest boost of order unity for the galaxy-size halos. Giving an accurate assessment of the boost factor is essential for indirect dark matter searches and thus, having models calibrated at large ranges of host masses and redshifts, is strongly urged upon.
Funder
Japan Society for the Promotion of Science
Subject
Astronomy and Astrophysics
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献