Assessment of a physics-based retrieval of exoplanet atmospheric temperatures from infrared emission spectra

Author:

Schreier Franz1ORCID,Grenfell J Lee2ORCID,Wunderlich Fabian2,Trautmann Thomas1

Affiliation:

1. DLR – Deutsches Zentrum für Luft- und Raumfahrt, Institut für Methodik der Fernerkundung , D-82234 Oberpfaffenhofen , Germany

2. DLR – Deutsches Zentrum für Luft- und Raumfahrt, Institut für Planetenforschung , Rutherfordstr. 2, D-12489 Berlin , Germany

Abstract

ABSTRACT Atmospheric temperatures are to be estimated from thermal emission spectra of Earth-like exoplanets orbiting M-stars as observed by current and future planned missions. To this end, a line-by-line radiative transfer code is used to generate synthetic thermal infrared (TIR) observations. The range of ‘observed’ intensities provides a rough hint of the atmospheric temperature range without any a priori knowledge. The equivalent brightness temperature (related to intensities by Planck’s function) at certain wavenumbers can be used to estimate the atmospheric temperature at corresponding altitudes. To exploit the full information provided by the measurement we generalize Chahine’s original approach and infer atmospheric temperatures from all spectral data using the wavenumber-to-altitude mapping defined by the weighting functions. Chahine relaxation allows an iterative refinement of this ‘first guess’. Analysis of the 4.3 and $15\rm \, \mu m$ carbon dioxide TIR bands enables an estimate of atmospheric temperatures for rocky exoplanets even for low signal-to-noise ratios of 10 and medium resolution. Inference of Trappist-1e temperatures is, however, more challenging especially for CO2 dominated atmospheres: the ‘standard’ 4.3 and $15\rm \, \mu m$ regions are optically thick and an extension of the spectral range towards atmospheric window regions is important. If atmospheric composition (essentially CO2 concentration) is known temperatures can be estimated remarkably well; quality measures such as the residual norm provide hints on incorrect abundances. In conclusion, temperature in the mid atmosphere of Earth-like planets orbiting cooler stars can be quickly estimated from thermal IR emission spectra with moderate resolution.

Funder

German Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3