The three-dimensional structure of galactic molecular cloud complexes out to 2.5 kpc

Author:

Dharmawardena T E1ORCID,Bailer-Jones C A L1,Fouesneau M1ORCID,Foreman-Mackey D2,Coronica P3,Colnaghi T3ORCID,Müller T1ORCID,Henshaw J1

Affiliation:

1. Max Plank Institute for Astronomy (MPIA) , Königstuhl 17, D-69117 Heidelberg, Germany

2. Center for Computational Astrophysics, Flatiron Institute , 162 5th Ave, New York, NY 10010, USA

3. Max Planck Computing and Data Facility , Gießenbachstraße 2, D-85748 Garching, Germany

Abstract

ABSTRACT Knowledge of the three-dimensional structure of Galactic molecular clouds is important for understanding how clouds are affected by processes such as turbulence and magnetic fields and how this structure affects star formation within them. Great progress has been made in this field with the arrival of the Gaia mission, which provides accurate distances to ∼109 stars. Combining these distances with extinctions inferred from optical–infrared, we recover the three-dimensional structure of 16 Galactic molecular cloud complexes at ∼1 pc resolution using our novel three-dimensional dust mapping algorithm dustribution. Using astrodendro, we derive a catalogue of physical parameters for each complex. We recover structures with aspect ratios between 1 and 11, i.e. everything from near-spherical to very elongated shapes. We find a large variation in cloud environments that is not apparent when studying them in two dimensions. For example, the nearby California and Orion A clouds look similar on sky, but we find California to be more sheet-like, and massive, which could explain their different star formation rates. By calculating the total mass of these individual clouds, we demonstrate that it is necessary to define cloud boundaries in three dimensions in order to obtain an accurate mass; simply integrating the extinction overestimates masses. We find that Larson’s relationship on mass versus radius holds true whether you assume a spherical shape for the cloud or take their true extents.

Funder

German Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3