Cloud properties across spatial scales in simulations of the interstellar medium

Author:

Colman Tine,Brucy NoéORCID,Girichidis Philipp,Glover Simon C. O.ORCID,Benedettini MilenaORCID,Soler Juan D.ORCID,Tress Robin G.ORCID,Traficante Alessio,Hennebelle Patrick,Klessen Ralf S.,Molinari Sergio,Miville-Deschênes Marc-Antoine

Abstract

Context. Molecular clouds (MCs) are structures of dense gas in the interstellar medium (ISM) that extend from ten to a few hundred parsecs and form the main gas reservoir available for star formation. Hydrodynamical simulations of a varying complexity are a promising way to investigate MCs evolution and their properties. However, each simulation typically has a limited range in resolution and different cloud extraction algorithms are used, which complicates the comparison between simulations. Aims. In this work, we aim to extract clouds from different simulations covering a wide range of spatial scales. We compare their properties, such as size, shape, mass, internal velocity dispersion, and virial state. Methods. We applied the HOP cloud detection algorithm on (M)HD numerical simulations of stratified ISM boxes and isolated galactic disk simulations that were produced using FLASH, RAMSES, and AREPO. Results. We find that the extracted clouds are complex in shape, ranging from round objects to complex filamentary networks in all setups. Despite the wide range of scales, resolution, and sub-grid physics, we observe surprisingly robust trends in the investigated metrics. The mass spectrum matches in the overlap between simulations without rescaling and with a high-mass power-law index of −1 for logarithmic bins of mass, in accordance with theoretical predictions. The internal velocity dispersion scales with the size of the cloud as σR0.75 for large clouds (R ≳ 3 pc). For small clouds we find larger σ compared to the power-law scaling, as seen in observations, which is due to supernova-driven turbulence. Almost all clouds are gravitationally unbound with the virial parameter scaling as αvirM−04, which is slightly flatter compared to observed scaling but in agreement given the large scatter. We note that the cloud distribution towards the low-mass end is only complete if the more dilute gas is also refined, rather than only the collapsing regions.

Funder

Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg

Deutsche Forschungsgemeinschaft

European Research Council

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3