II. The effect of axisymmetric and spatially varying equilibria and flow on MHD wave modes: cylindrical geometry

Author:

Skirvin S J1ORCID,Fedun V1,Silva Suzana S A1,Verth G2

Affiliation:

1. Plasma Dynamics Group, Department of Automatic Control & Systems Engineering, The University of Sheffield, Sheffield S3 7RH, UK

2. Plasma Dynamics Group, Department of Mathematics and Statistics, The University of Sheffield, Sheffield S3 7RH, UK

Abstract

ABSTRACT Magnetohydrodynamic (MHD) waves are routinely observed in the solar atmosphere. These waves are important in the context of solar physics as it is widely believed they can contribute to the energy budget of the solar atmosphere and are a prime candidate to contribute towards coronal heating. Realistic models of these waves are required representing observed configurations such that plasma properties can be determined more accurately, since they cannot be measured directly. This work utilizes a previously developed numerical technique to find permittable eigenvalues under different non-uniform equilibrium conditions in a Cartesian magnetic slab geometry. Here, we investigate the properties of magnetoacoustic waves under non-uniform equilibria in a cylindrical geometry. Previously obtained analytical results are retrieved to emphasize the power and applicability of this numerical technique. Further case studies investigate the effect that a radially non-uniform plasma density and non-uniform plasma flow, modelled as a series of Gaussian profiles, have on the properties of different MHD waves. For all cases the dispersion diagrams are obtained and spatial eigenfunctions calculated which display the effects of the equilibrium inhomogeneity. It is shown that as the equilibrium non-uniformity is increased, the radial spatial eigenfunctions are affected and extra nodes introduced, similar to the previous investigation of a magnetic slab. Furthermore, azimuthal perturbations are increased with increasing inhomogeneity introducing vortical motions inside the waveguide. Finally, 2D and 3D representations of the velocity fields are shown which may be useful for observers for wave mode identification under realistic magnetic waveguides with ever increasing instrument resolution.

Funder

STFC

Horizon 2020 Framework Programme

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3