The complex multiscale structure in simulated and observed emission maps of the proto-cluster cloud G0.253+0.016 (‘the Brick’)

Author:

Petkova Maya A12ORCID,Kruijssen J M Diederik13ORCID,Kluge A Louise1,Glover Simon C O4ORCID,Walker Daniel L5ORCID,Longmore Steven N6,Henshaw Jonathan D67ORCID,Reissl Stefan4,Dale James E8

Affiliation:

1. Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg , Mönchhofstraße 12-14, D-69120 Heidelberg, Germany

2. Space, Earth and Environment Department, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden

3. Cosmic Origins Of Life (COOL) Research DAO , coolresearch.io

4. Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik , Albert-Ueberle-Str 2, D-69120 Heidelberg, Germany

5. Department of Physics, University of Connecticut , 196A Auditorium Road, Storrs, 06269 CT, USA

6. Astrophysics Research Institute, Liverpool John Moores University , IC2, Liverpool Science Park, 146 Brownlow Hill, L3 5RF Liverpool, UK

7. Max-Planck-Institut für Astronomie , Königstuhl 17, D-69117 Heidelberg, Germany

8. Centre for Astrophysics Research, University of Hertfordshire , AL10 9AB Hatfield, UK

Abstract

ABSTRACT The Central Molecular Zone (the central ∼500 pc of the Milky Way) hosts molecular clouds in an extreme environment of strong shear, high gas pressure and density, and complex chemistry. G0.253+0.016, also known as ‘the Brick’, is the densest, most compact, and quiescent of these clouds. High-resolution observations with the Atacama Large Millimetre/submillimetre Array (ALMA) have revealed its complex, hierarchical structure. In this paper we compare the properties of recent hydrodynamical simulations of the Brick to those of the ALMA observations. To facilitate the comparison, we post-process the simulations and create synthetic ALMA maps of molecular line emission from eight molecules. We correlate the line emission maps to each other and to the mass column density and find that HNCO is the best mass tracer of the eight emission lines within the simulations. Additionally, we characterize the spatial structure of the observed and simulated cloud using the density probability distribution function (PDF), spatial power spectrum, fractal dimension, and moments of inertia. While we find good agreement between the observed and simulated data in terms of power spectra and fractal dimensions, there are key differences in the density PDFs and moments of inertia, which we attribute to the omission of magnetic fields in the simulations. This demonstrates that the presence of the Galactic potential can reproduce many cloud properties, but additional physical processes are needed to fully explain the gas structure.

Funder

European Research Council

Deutsche Forschungsgemeinschaft

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3