Kinematics of Galactic Centre clouds shaped by shear-seeded solenoidal turbulence

Author:

Petkova Maya A12ORCID,Kruijssen J M Diederik34ORCID,Henshaw Jonathan D56ORCID,Longmore Steven N45,Glover Simon C O7ORCID,Sormani Mattia C7ORCID,Armillotta Lucia8ORCID,Barnes Ashley T9ORCID,Klessen Ralf S710ORCID,Nogueras-Lara Francisco11ORCID,Tress Robin G12ORCID,Armijos-Abendaño Jairo1314ORCID,Colzi Laura15ORCID,Federrath Christoph1617,García Pablo1819,Ginsburg Adam20,Henkel Christian2122,Martín Sergio2324,Riquelme Denise212526,Rivilla Víctor M15ORCID

Affiliation:

1. Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg , Mönchhofstr 12–14, D-69120 Heidelberg , Germany

2. Space, Earth and Environment Department, Chalmers University of Technology , SE-412 96 Gothenburg , Sweden

3. Chair of Remote Sensing Technology, Department of Aerospace and Geodesy, School of Engineering and Design, Technical University of Munich , Arcisstr. 21, D-80333 Munich , Germany

4. Cosmic Origins Of Life (COOL) Research DAO , coolresearch.io

5. Astrophysics Research Institute, Liverpool John Moores University , IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF , UK

6. Max-Planck-Institut für Astronomie , Königstuhl 17, D-69117 Heidelberg , Germany

7. Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik , Albert-Ueberle-Str 2, D-69120 Heidelberg , Germany

8. Department of Astrophysical Sciences, Princeton University , Princeton, NJ 08544 , USA

9. Institut für Astronomie, Universität Bonn , Auf dem Hügel 71, D-53121, Bonn, DE , Germany

10. Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg, , Im Neuenheimer Feld 205, D-69120 Heidelberg , Germany

11. European Southern Observatory , Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München , Germany

12. Laboratory for galaxy evolution and spectral modelling, Institute of Physics, EPFL, Observatoire de Sauverny , Chemin Pegais 51, CH-1290 Versoix , Switzerland

13. School of Physics and Astronomy, Cardiff University , The Parade, Cardiff CF24 3AA , UK

14. Observatorio Astronómico de Quito, Escuela Politécnica Nacional , 170136 Quito , Ecuador

15. Centro de Astrobiología (CAB), CSIC-INTA , Ctra. de Ajalvir Km. 4, E-28850 Torrejón de Ardoz, Madrid , Spain

16. Research School of Astronomy and Astrophysics, Australian National University , Canberra ACT 2611 , Australia

17. Australian Research Council Centre of Excellence in All Sky Astrophysics (ASTRO3D) , Canberra ACT 2611 , Australia

18. Instituto de Astronomía, Universidad Católica del Norte , Av. Angamos 0610, Antofagasta 1270709 , Chile

19. Chinese Academy of Sciences South America Center for Astronomy, National Astronomical Observatories, CAS , Beijing 100101 , China

20. Department of Astronomy, 211 Bryant Space Science Center, University of Florida , PO Box 112055, Gainesville, FL 32611-2055 , USA

21. Max-Planck-Institut für Radioastronomie , Auf dem Hügel 69, D-53121 Bonn , Germany

22. Astronomy Department, Faculty of Science, King Abdulaziz University , PO Box 80203, Jeddah 21589 , Saudi Arabia

23. European Southern Observatory, Alonso de Córdova , 3107, Vitacura, Santiago 763-0355 , Chile

24. Joint ALMA Observatory, Alonso de Córdova , 3107, Vitacura, Santiago 763-0355 , Chile

25. Departamento de Astronomía, Universidad de La Serena , Av. Cisternas 1200, La Serena 1720229 , Chile

26. Instituto Multidisciplinario de Investigación y Postgrado, Universidad de La Serena , Raúl Bitrán 1305, La Serena 1720229 , Chile

Abstract

ABSTRACT The Central Molecular Zone (CMZ; the central ∼500 pc of the Galaxy) is a kinematically unusual environment relative to the Galactic disc, with high-velocity dispersions and a steep size–linewidth relation of the molecular clouds. In addition, the CMZ region has a significantly lower star formation rate (SFR) than expected by its large amount of dense gas. An important factor in explaining the low SFR is the turbulent state of the star-forming gas, which seems to be dominated by rotational modes. However, the turbulence driving mechanism remains unclear. In this work, we investigate how the Galactic gravitational potential affects the turbulence in CMZ clouds. We focus on the CMZ cloud G0.253+0.016 (‘the Brick’), which is very quiescent and unlikely to be kinematically dominated by stellar feedback. We demonstrate that several kinematic properties of the Brick arise naturally in a cloud-scale hydrodynamics simulation, that takes into account the Galactic gravitational potential. These properties include the line-of-sight velocity distribution, the steepened size–linewidth relation, and the predominantly solenoidal nature of the turbulence. Within the simulation, these properties result from the Galactic shear in combination with the cloud’s gravitational collapse. This is a strong indication that the Galactic gravitational potential plays a crucial role in shaping the CMZ gas kinematics, and is a major contributor to suppressing the SFR, by inducing predominantly solenoidal turbulent modes.

Funder

European Research Council

Deutsche Forschungsgemeinschaft

NSF

Space Telescope Science Institute

MCIN

AEI

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3