Case AD, AR, and AS binary evolution and their possible connections with W UMa binaries

Author:

Jiang Dengkai123

Affiliation:

1. Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming 650216, P. R. China

2. Center for Astronomical Mega-Science, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012, P. R. China

3. Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011, P. R. China

Abstract

ABSTRACT Close detached binaries were theoretically predicted to evolve into contact by three subtypes of case A binary evolution, cases AD, AR, and AS, which correspond to the formation of contact during dynamic-, thermal-, and nuclear-time-scale mass transfer phases, respectively. It is unclear, however, what is the difference between contact binaries in these subtypes, and whether all of these subtypes can account for the formation of observed W Ursae Majoris (W UMa) binaries. Using Eggleton’s stellar evolution code with the non-conservative assumption, I obtained the low-mass contact binaries produced by cases AD, AR, and AS at the moment of contact and their parameter spaces. The results support that the progenitors of low-mass contact binaries are detached binaries with orbital periods shorter than $\sim 2\!-\!5\,$ d, and their borderlines depend strongly on the primary mass. In addition, the period–colour relations for cases AR and AS can be in better agreement with that for observed W UMa candidates, but case AD shows a significantly worse agreement. Moreover, cases AR and AS can produce a short-period limit (corresponding to a low-mass limit) at almost any age, e.g. from young age ($\sim 0.2\,$ Gyr) to old age ($\sim 13\,$ Gyr), agreeing with observed W UMa binaries in star clusters, but no such limit occurs for case AD at any age. These results support that cases AR and AS, as opposed to case AD, can lead to W UMa binaries (including young W UMa binaries).

Funder

Natural Science Foundation of China

Natural Science Foundation of Yunnan Province

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3