Physical Parameters of 11,100 Short-period ASAS-SN Eclipsing Contact Binaries

Author:

Li 李 Xu-Zhi 旭志ORCID,Zhu 朱 Qing-Feng 青峰ORCID,Ding 丁 Xu 旭ORCID,Xu 徐 Xiao-Hui 小慧,Zheng 郑 Hang 航,Qiu 邱 Jin-Sheng 锦盛,Liu 刘 Ming-Chao 明超ORCID

Abstract

Abstract Starting from more than 11,200 short-period (less than 0.5 days) EW-type eclipsing binary candidates with the All-Sky Automated Survey for Supernovae V-band light curves, we use the Markov Chain Monte Carlo algorithm and neural networks to obtain the mass ratio (q), orbital inclination (incl), fill-out factor (f), and temperature ratio (T s /T p ). After crossmatching with the Gaia DR3 database, the final sample contains parameters of 2399 A-type and 8712 W-type contact binaries (CBs). We present the distributions of parameters of these 11,111 short-period CBs. The mass ratio (q) and fill-out factor (f) are found to obey log-normal distributions, and the remaining parameters obey normal distributions. There is a significant period–temperature correlation of these CBs. Additionally, the temperature ratio (T s /T p ) tends to increase as the orbital period decreases for W-type CBs. There is no significant correlation between them for A-type CBs. The mass ratio and fill-out factor (qf) diagram suggest there is no significant correlation between these two parameters. A clear correlation exists between the mass ratio and radius ratio. The radius ratio increases with the mass ratio. Moreover, the deep fill-out CBs tend to fall on the upper boundary of the qR s /R p distribution, while the shallow fill-out CBs fall on the lower boundary.

Funder

MOST ∣ National Key Research and Development Program of China

∣ Natural Science Foundation of Anhui Province

China Postdoctoral Science Foundation

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gaia’s binary star renaissance;New Astronomy Reviews;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3