Characteristics of source location and solar cycle distribution of the strong solar proton events (≥ 1000 pfu) from 1976 to 2018

Author:

Le Gui-Ming12ORCID,Zhao Ming-Xian1,Li Qi3,Liu Gui-Ang2,Mao Tian1,Xu Ping-Guo4

Affiliation:

1. Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081, P.R. China

2. School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, P.R. China

3. Institute of Geophysics, China Earthquake Administration, Beijing 100081, P.R. China

4. Beijing Engineering Research Center of Smart Mechanical Innovation Design Service, Beijing 100020, P.R. China

Abstract

Abstract We studied the source locations and solar cycle distribution of strong solar proton events (≥ 1000 pfu) measured at the Earth from 1976 to 2018. There were 43 strong solar proton events (SPEs) during this period. 27.9 per cent of the strong SPEs were ground level enhancement (GLE) events. We detect more strong SPEs coming from the western hemisphere. The strong SPEs were distributed in the region of [E90-W90], extreme SPEs (≥10000 pfu) appeared within the longitudinal area from E30 to W75, while the SPEs with peak fluxes ≥ 20000 pfu concentrated in the range from E30 to W30 and were always accompanied by super geomagnetic storms (Dst ≤−250 nT). The northern and southern hemispheres of the Sun have 23 and 20 strong SPEs, respectively. The ranges S0–S19 and N0–N19 have 13 and 11 strong SPEs, respectively. S20–S45 and N20–N45 have 7 and 12 strong SPEs, respectively, indicating that the N-S asymmetry of strong SPEs mainly occurred in the areas with a latitude greater than 20○ of the two hemispheres of the Sun. The statistical results showed that 48.8 per cent, 51.2 per cent, and 76.7 per cent of the strong SPEs appeared during the rising phase, declining phase, and in the period from two years before to the three years after the solar maximum, respectively. The number of strong SPEs during a solar cycle has a poor correlation with the solar cycle size.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3