N-S Asymmetry and Solar Cycle Distribution of Superactive Regions from 1976 to 2017

Author:

Zhao Ming-XianORCID,Le Gui-MingORCID,Liu Yong-Hua

Abstract

There were 51 superactive regions (SARs) during solar cycles (SCs) 21–24. We divided the SARs into SARs1, which produced extreme space weather events including ≥X5.0 flares, ground level events (GLEs), and super geomagnetic storms (SGSs, Dst < −250 nT), and SARs2, which did not produce extreme space weather events. The total number of SARs1 and SARs2 are 31 and 20, respectively. The statistical results showed that 35.5%, 64.5%, and 77.4% of the SARs1 appeared in the ascending phase, descending phase, and in the period from two years before to the three years after the solar maximum, respectively, whereas 50%, 50%, and 100% of the SARs2 appeared in the ascending phase, descending phase, and in the period from two years before to the three years after the solar maximum, respectively. The total number of SARs during an SC has a good association with the SC amplitude, implying that an SC with a higher amplitude will have more SARs than that with a lower amplitude. However, the largest flare index of a SAR within an SC has a poor association with the SC amplitude, suggesting that a weak cycle may have a SAR that may produce a series of very strong solar flares. The analysis of the north–south asymmetry of the SARs showed that SARs1 dominated in the southern hemisphere of the sun during SCs 21–24. The SAR2 dominated in the different hemispheres by turns for different SCs. The solar flare activities caused by the SARs with source locations in the southern hemisphere of the sun were much stronger than those caused by the SARs with source locations in the northern hemisphere of the sun during SCs 21–24.

Funder

Sino-South Africa Joint Research on Polar Space Environment

CAS Key Laboratory of Solar Activity

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3