The PAU Survey: background light estimation with deep learning techniques

Author:

Cabayol-Garcia L1,Eriksen M1,Alarcón A23ORCID,Amara A4,Carretero J1,Casas R23,Castander F J23,Fernández E1,García-Bellido J5,Gaztanaga E23,Hoekstra H6ORCID,Miquel R17,Neissner C1,Padilla C1,Sánchez E8,Serrano S2,Sevilla-Noarbe I2,Siudek M1ORCID,Tallada P8,Tortorelli L9

Affiliation:

1. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, E-08193 Bellaterra (Barcelona), Spain

2. Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain

3. Institut d’Estudis Espacials de Catalunya (IEEC), E-08193 Barcelona, Spain

4. Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX, UK

5. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain

6. Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, The Netherlands

7. Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain

8. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), E-28040 Madrid, Spain

9. Institute for Particle Physics and Astrophysics, ETH Zürich, Wolfgang-Pauli-Str 27, CH-8093 Zürich, Switzerland

Abstract

ABSTRACT In any imaging survey, measuring accurately the astronomical background light is crucial to obtain good photometry. This paper introduces BKGnet, a deep neural network to predict the background and its associated error. BKGnet has been developed for data from the Physics of the Accelerating Universe Survey (PAUS), an imaging survey using a 40 narrow-band filter camera (PAUCam). The images obtained with PAUCam are affected by scattered light: an optical effect consisting of light multiply reflected that deposits energy in specific detector regions affecting the science measurements. Fortunately, scattered light is not a random effect, but it can be predicted and corrected for. We have found that BKGnet background predictions are very robust to distorting effects, while still being statistically accurate. On average, the use of BKGnet improves the photometric flux measurements by $7{{\ \rm per\ cent}}$ and up to $20{{\ \rm per\ cent}}$ at the bright end. BKGnet also removes a systematic trend in the background error estimation with magnitude in the i band that is present with the current PAU data management method. With BKGnet, we reduce the photometric redshift outlier rate by $35{{\ \rm per\ cent}}$ for the best $20{{\ \rm per\ cent}}$ galaxies selected with a photometric quality parameter.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The PAU survey: classifying low-z SEDs using Machine Learning clustering;Monthly Notices of the Royal Astronomical Society;2023-07-17

2. The Physics of the Accelerating Universe Survey: narrow-band image photometry;Monthly Notices of the Royal Astronomical Society;2023-05-11

3. The PAU survey: close galaxy pairs identification and analysis;Monthly Notices of the Royal Astronomical Society;2023-05-04

4. The PAU Survey and Euclid: Improving broadband photometric redshifts with multi-task learning;Astronomy & Astrophysics;2023-03

5. The Dawes Review 10: The impact of deep learning for the analysis of galaxy surveys;Publications of the Astronomical Society of Australia;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3