The PAU survey: classifying low-z SEDs using Machine Learning clustering

Author:

González-Morán A L123ORCID,Haro P Arrabal4ORCID,Muñoz-Tuñón C12,Rodríguez-Espinosa J M125,Sánchez-Almeida J12ORCID,Calhau J12,Gaztañaga E67ORCID,Castander F J67,Renard P8ORCID,Cabayol L9,Fernandez E1,Padilla C1,Garcia-Bellido J10,Miquel R1112,De Vicente J13,Sanchez E13,Sevilla-Noarbe I13,Navarro-Gironés D67

Affiliation:

1. Instituto de Astrofísica de Canarias , Vía Láctea s/n, La Laguna, S.C. Tenerife, 38205 , Spain

2. Departamento de Astrofísica, Universidad de La Laguna , 38206 , Spain

3. Facultad de Ciencias de la Tierra y el Espacio, Universidad Autónoma de Sinaloa , Cd Universitaria, Culiacán, Sinaloa, 80040 , México

4. NSF’s National Optical-Infrared Astronomy Research Laboratory , 950 N. Cherry Ave , Tucson, AZ 85719, USA

5. Instituto de Astrofísica de Andalucía , Granada, E-18008 , Spain

6. Institute of Space Sciences (ICE , CSIC) , Campus UAB, Carrer de Can Magrans s/n, Barcelona, 08193 , Spain

7. Institut d’Estudis Espacials de Catalunya (IEEC) , Barcelona, E-08034 , Spain

8. Department of Astronomy, Tsinghua University , Beijing, 100084 , China

9. Port d’Informació Científica (PIC-IFAE) , Campus UAB, Edifici D, Bellaterra, (Cerdanyola del Vallès), E-08193 , Spain

10. Instituto de Física Teórica (UAM-CSIC), Universidad Autónoma de Madrid , Cantoblanco, 28049 , Spain

11. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology (BIST) , Facultat de Ciències , Edifici Cn, Campus UAB, Bellaterra (Barcelona), 08193 , Spain

12. Catalana de Rercerca i Estudis Avançats (ICREA) , Barcelona, 08010 , Spain

13. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) , Avenida Complutense 40, Madrid, E-28040 , Spain

Abstract

ABSTRACT We present an application of unsupervised Machine Learning clustering to the PAU survey of galaxy spectral energy distribution (SED) within the COSMOS field. The clustering algorithm is implemented and optimized to get the relevant groups in the data SEDs. We find 12 groups from a total number of 5234 targets in the survey at 0.01 < z < 0.28. Among the groups, 3545 galaxies (68  per cent) show emission lines in the SEDs. These groups also include 1689 old galaxies with no active star formation. We have fitted the SED to every single galaxy in each group with CIGALE. The mass, age, and specific star formation rates (sSFR) of the galaxies range from 0.15 < age/Gyr <11; 6 < log (M⋆/M⊙) <11.26, and −14.67 < log (sSFR/yr−1) <−8. The groups are well-defined in their properties with galaxies having clear emission lines also having lower mass, are younger and have higher sSFR than those with elliptical like patterns. The characteristic values of galaxies showing clear emission lines are in agreement with the literature for starburst galaxies in COSMOS and GOODS-N fields at low redshift. The star-forming main sequence, sSFR versus stellar mass and UVJ diagram show clearly that different groups fall into different regions with some overlap among groups. Our main result is that the joint of low- resolution (R ∼ 50) photometric spectra provided by the PAU survey together with the unsupervised classification provides an excellent way to classify galaxies. Moreover, it helps to find and extend the analysis of extreme ELGs to lower masses and lower SFRs in the local Universe.

Funder

Spanish Ministry of Science and Innovation

FEDER

MINECO

HORIZON EUROPE Marie Sklodowska-Curie Actions

Durham University

Eidgenössische Technische Hochschule Zürich

Netherlands Organisation for Scientific Research

University College London

EWC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3