Cosmological test of gravity using weak lensing voids

Author:

Davies Christopher T1,Cautun Marius12ORCID,Li Baojiu1ORCID

Affiliation:

1. Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK

2. Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, the Netherlands

Abstract

ABSTRACT Modifications to general relativity often incorporate screening mechanisms in order to remain compatible with existing tests of gravity. The screening is less efficient in underdense regions, which suggests that cosmic voids can be a useful cosmological probe for constraining modified gravity models. In particular, weak lensing by voids has been proposed as a promising test of such theories. Usually, voids are identified from galaxy distributions, making them biased tracers of the underlying matter field. An alternative approach is to study voids identified in weak lensing maps – weak lensing voids – which have been shown to better correspond to true underdense regions. In this paper, we study the ability of weak lensing voids to detect the signatures of modified gravity. Focusing on the void abundance and weak lensing profiles, we find that both statistics are sensitive probes of gravity. These are quantified in terms of the signal-to-noise ratios (SNR) with which an LSST-like survey will be able to distinguish between different gravity models. We find that the tangential shear profiles of weak lensing voids are considerably better than galaxy voids at this, though voids have somewhat lower SNR than weak lensing peaks. The abundances of voids and peaks have, respectively, $\rm {SNR} = 50$ and 70 for a popular class of modified gravity in an LSST-like survey.

Funder

Science and Technology Facilities Council

European Research Council

Horizon 2020

Marie Skłodowska-Curie

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constraining modified gravity with weak-lensing peaks;Monthly Notices of the Royal Astronomical Society;2024-08-15

2. Why cosmic voids matter: mitigation of baryonic physics;Journal of Cosmology and Astroparticle Physics;2024-08-01

3. Towards cosmology with void lensing: how to find voids sensitive to weak-lensing and numerically interpret them;Journal of Cosmology and Astroparticle Physics;2024-06-01

4. mglens: Modified gravity weak lensing simulations for emulation-based cosmological inference;Monthly Notices of the Royal Astronomical Society;2023-09-07

5. On the merger rate of primordial black holes in cosmic voids;Physics of the Dark Universe;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3