Identifying optical turbulence profiles for realistic tomographic error in adaptive optics

Author:

Farley O J D1ORCID,Osborn J1ORCID,Morris T1,Fusco T23,Neichel B2,Correia C2,Wilson R W1

Affiliation:

1. Centre for Advanced Instrumentation (CfAI), Department of Physics, Durham University, Durham DH1 3LE, UK

2. Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France

3. ONERA, 29 avenue de la Division Leclerc, F-92322 Châtillon, France

Abstract

ABSTRACT For extremely large telescopes, adaptive optics will be required to correct the Earth’s turbulent atmosphere. The performance of tomographic adaptive optics is strongly dependent on the vertical distribution (profile) of this turbulence. An important way in which this manifests is the tomographic error, arising from imperfect measurement and reconstruction of the turbulent phase at altitude. Conventionally, a small number of reference profiles are used to obtain this error in simulation; however these profiles are not constructed to be representative in terms of tomographic error. It is therefore unknown whether these simulations are providing realistic performance estimates. Here, we employ analytical adaptive optics simulation that drastically reduces computation times to compute tomographic error for 10 691 measurements of the turbulence profile gathered by the Stereo-SCIDAR instrument at ESO Paranal. We assess for the first time the impact of the profile on tomographic error in a statistical manner. We find, in agreement with previous work, that the tomographic error is most directly linked with the distribution of turbulence into discrete, stratified layers. Reference profiles are found to provide mostly higher tomographic error than expected, which we attribute to the fact that these profiles are primarily composed of averages of many measurements resulting in unrealistic, continuous distributions of turbulence. We propose that a representative profile should be defined with respect to a particular system, and that as such simulations with a large statistical sample of profiles must be an important step in the design process.

Funder

Science and Technology Facilities Council

Horizon 2020

French National Research Agency

Centre National de la Recherche Scientifique

Centre National d’Etudes Spatiales

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3