Atmospheric Turbulence Study with Deep Machine Learning of Intensity Scintillation Patterns

Author:

Vorontsov Artem M.,Vorontsov Mikhail A.,Filimonov Grigorii A.,Polnau ErnstORCID

Abstract

A new paradigm for machine learning-inspired atmospheric turbulence sensing is developed and applied to predict the atmospheric turbulence refractive index structure parameter using deep neural network (DNN)-based processing of short-exposure laser beam intensity scintillation patterns obtained with both: experimental measurement trials conducted over a 7 km propagation path, and imitation of these trials using wave-optics numerical simulations. The developed DNN model was optimized and evaluated in a set of machine learning experiments. The results obtained demonstrate both good accuracy and high temporal resolution in sensing. The machine learning approach was also employed to challenge the validity of several eminent atmospheric turbulence theoretical models and to evaluate them against the experimentally measured data.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference45 articles.

1. Turbulence: Classic Papers on Statistical Theory;Kolmogorov,1961

2. Wave Propagation in a Turbulent Medium;Tatarskii,1961

3. Adaptive Optics for Astronomical Telescopes

4. Free-Space Laser Communications;Majumdar,2008

5. An. Introduction to Laser Weapon Systems;Perram,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3