Observations of compact sources in galaxy clusters using MUSTANG2

Author:

Dicker Simon R1ORCID,Battistelli Elia S2,Bhandarkar Tanay1,Devlin Mark J1ORCID,Duff Shannon M3,Hilton Gene3,Hilton Matt45,Hincks Adam D6ORCID,Hubmayr Johannes3,Huffenberger Kevin7ORCID,Hughes John P8,Di Mascolo Luca91011ORCID,Mason Brian S12ORCID,Mates J A B3,McMahon Jeff13141516,Mroczkowski Tony17ORCID,Naess Sigurd18,Orlowski-Scherer John1,Partridge Bruce19,Radiconi Federico2,Romero Charles120ORCID,Sarazin Craig L21ORCID,Sehgal Neelima22,Sievers Jonathan23ORCID,Sifón Cristóbal24,Ullom Joel3,Vale Leila R3,Vissers Michael R3,Xu Zhilei125ORCID

Affiliation:

1. Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA

2. Sapienza University of Rome, Physics Department, Piazzale Aldo Moro 5, I-00185 Rome, Italy

3. NIST, Quantum Sensors Group, 325 Broadway, Boulder, CO 80305, USA

4. Astrophysics Research Centre, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa

5. School of Mathematics, Statistics & Computer Science, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa

6. David A. Dunlap Department of Astronomy & Astrophysics, University of Toronto, 50 St. George St., Toronto ON M5S 3H4, Canada

7. Department of Physics, Florida State University, Tallahassee, FL 32306, USA

8. Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA

9. Astronomy Unit, Department of Physics, University of Trieste, via Tiepolo 11, Trieste I-34131, Italy

10. INAF – Osservatorio Astronomico di Trieste, via Tiepolo 11, Trieste I-34131, Italy

11. IFPU – Institute for Fundamental Physics of the Universe, via Beirut 2, I-34014 Trieste, Italy

12. National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville, VA 22903, USA

13. Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637, USA

14. Kavli Institute for Cosmological Physics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637, USA

15. Department of Physics, University of Chicago, Chicago, IL 60637, USA

16. Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA

17. European Southern Observatory, Karl-Schwarzschild-Strasse 2, Garching D-85748, Germany

18. Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA

19. Department of Astronomy, Haverford College, 370 Lancaster Ave, Haverford PA 19041, USA

20. Green Bank Observatory, 155 Observatory Road, Green Bank, WV 24944. USA

21. Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904, USA

22. Physics and Astronomy Department, Stony Brook University, Stony Brook, NY 11794, USA

23. Department of Physics, McGill University, 3600 University Street Montreal, QC H3A 2T8, Canada

24. Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile

25. MIT Kavli Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Abstract

ABSTRACT Compact sources can cause scatter in the scaling relationships between the amplitude of the thermal Sunyaev–Zel’dovich Effect (tSZE) in galaxy clusters and cluster mass. Estimates of the importance of this scatter vary – largely due to limited data on sources in clusters at the frequencies at which tSZE cluster surveys operate. In this paper, we present 90 GHz compact source measurements from a sample of 30 clusters observed using the MUSTANG2 instrument on the Green Bank Telescope. We present simulations of how a source’s flux density, spectral index, and angular separation from the cluster’s centre affect the measured tSZE in clusters detected by the Atacama Cosmology Telescope (ACT). By comparing the MUSTANG2 measurements with these simulations we calibrate an empirical relationship between 1.4 GHz flux densities from radio surveys and source contamination in ACT tSZE measurements. We find 3 per cent of the ACT clusters have more than a 20 per cent decrease in Compton-y but another 3 per cent have a 10 per cent increase in the Compton-y due to the matched filters used to find clusters. As sources affect the measured tSZE signal and hence the likelihood that a cluster will be detected, testing the level of source contamination in the tSZE signal using a tSZE-selected catalogue is inherently biased. We confirm this by comparing the ACT tSZE catalogue with optically and X-ray-selected cluster catalogues. There is a strong case for a large, high-resolution survey of clusters to better characterize their source population.

Funder

National Science Foundation

Associated Universities, Inc.

Princeton University

University of Pennsylvania

Canada Foundation for Innovation

CONICYT

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3