Sensitive 3 mm Imaging of Discrete Sources in the Fields of Thermal Sunyaev–Zel’dovich Effect–Selected Galaxy Clusters

Author:

Dicker Simon R.ORCID,Sarmiento Karen Perez,Mason BrianORCID,Bhandarkar TanayORCID,Devlin Mark J.,Di Mascolo LucaORCID,Haridas Saianeesh,Hilton MattORCID,Madhavacheril Mathew,Moravec EmilyORCID,Mroczkowski TonyORCID,Orlowski-Scherer JohnORCID,Romero CharlesORCID,Sarazin Craig L.,Sievers JonathanORCID

Abstract

Abstract In this paper, we present the results of a blind survey for compact sources in 243 Galaxy clusters that were identified using the thermal Sunyaev–Zel'dovich effect (tSZ). The survey was carried out at 90 GHz using MUSTANG2 on the Green Bank Telescope and achieved a 5σ detection limit of 1 mJy in the center of each cluster. We detected 24 discrete sources. The majority (18) of these correspond to known radio sources, and of these, five show signs of significant variability, either with time or in spectral index. The remaining sources have no clear counterparts at other wavelengths. Searches for galaxy clusters via the tSZ strongly rely on observations at 90 GHz, and the sources found have the potential to bias mass estimates of clusters. We compare our results to the Websky simulation that can be used to estimate the source contamination in galaxy cluster catalogs. While the simulation shows a good match to our observations at the clusters’ centers, it does not match our source distribution further out. Sources over 104″ from a cluster’s center bias the tSZ signal high, for some of the sources found, by over 50%. When averaged over the whole cluster population, the effect is smaller but still at a level of 1%–2%. We also discovered that unlike previous measurements and simulations, we see an enhancement of source counts in the outer regions of the clusters and fewer sources than expected in the centers of this tSZ-selected sample.

Funder

National Science Foundation

National Research Foundation

Agence Nationale de la Recherche

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3