Hydrodynamic escape of mineral atmosphere from hot rocky exoplanet. I. Model description

Author:

Ito Yuichi12ORCID,Ikoma Masahiro13

Affiliation:

1. Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

2. Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK

3. Research Center for the Early Universe (RESCEU), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract

ABSTRACT Recent exoplanet statistics indicate that photo-evaporation has a great impact on the mass and bulk composition of close-in low-mass planets. While there are many studies addressing photo-evaporation of hydrogen- or water-rich atmospheres, no detailed investigation regarding rocky vapour atmospheres (or mineral atmospheres) has been conducted. Here, we develop a new 1D hydrodynamic model of the ultraviolet (UV)-irradiated mineral atmosphere composed of Na, Mg, O, Si, their ions and electrons, including molecular diffusion, thermal conduction, photo-/thermochemistry, X–ray and UV heating, and radiative line cooling (i.e. the effects of the optical thickness and non-local thermal equilibrium). The focus of this paper is on describing our methodology but presents some new findings. Our hydrodynamic simulations demonstrate that almost all of the incident X-ray and UV energy from the host star is converted into and lost by the radiative emission of the coolant gas species such as Na, Mg, Mg+, Si2+, Na3+, and Si3+. For an Earth-size planet orbiting 0.02 au around a young solar-type star, we find that the X-ray and UV heating efficiency is as small as 1 × 10−3, which corresponds to 0.3 M⊕ Gyr−1 of the mass-loss rate simply integrated over all the directions. Because of such efficient cooling, the photo-evaporation of the mineral atmosphere on hot rocky exoplanets with masses of 1 M⊕ is not massive enough to exert a great influence on the planetary mass and bulk composition. This suggests that close-in high-density exoplanets with sizes larger than the Earth radius survive in the high-UV environments.

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exoplanet Geology: What Can We Learn from Current and Future Observations?;Reviews in Mineralogy and Geochemistry;2024-07-01

2. Formation of super-Mercuries via giant impacts;Monthly Notices of the Royal Astronomical Society;2024-03-04

3. Numerical Performance of Correlated-k Distribution Method in Atmospheric Escape Simulation;The Astrophysical Journal;2024-02-01

4. A High-resolution Non-detection of Escaping Helium in the Ultrahot Neptune LTT 9779b: Evidence for Weakened Evaporation;The Astrophysical Journal Letters;2024-02-01

5. The evolution of catastrophically evaporating rocky planets;Monthly Notices of the Royal Astronomical Society;2024-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3