High-energy environment of super-Earth 55 Cancri e

Author:

Bourrier V.,Ehrenreich D.,Lecavelier des Etangs A.,Louden T.,Wheatley P. J.,Wyttenbach A.,Vidal-Madjar A.,Lavie B.,Pepe F.,Udry S.

Abstract

The high-energy X-ray to ultraviolet (XUV) irradiation of close-in planets by their host star influences their evolution and might be responsible for the existence of a population of ultra-short period planets eroded to their bare core. In orbit around a bright, nearby G-type star, the super-Earth 55 Cnc e offers the possibility to address these issues through transit observations at UV wavelengths. We used the Hubble Space Telescope to observe the transit in the far-ultraviolet (FUV) over three epochs in April 2016, January 2017, and February 2017. Together, these observations cover nearly half of the orbital trajectory in between the two quadratures, and reveal significant short- and long-term variability in 55 Cnc chromospheric emission lines. In the last two epochs, we detected a larger flux in the C III, Si III, and Si IV lines after the planet passed the approaching quadrature, followed by a flux decrease in the Si IV doublet. In the second epoch these variations are contemporaneous with flux decreases in the Si II and C II doublets. All epochs show flux decreases in the N V doublet as well, albeit at different orbital phases. These flux decreases are consistent with absorption from optically thin clouds of gas, are mostly localized at low and redshifted radial velocities in the star rest frame, and occur preferentially before and during the planet transit. These three points make it unlikely that the variations are purely stellar in origin, yet we show that the occulting material is also unlikely to originate from the planet. We thus tentatively propose that the motion of 55 Cnc e at the fringes of the stellar corona leads to the formation of a cool coronal rain. The inhomogeneity and temporal evolution of the stellar corona would be responsible for the differences between the three visits. Additional variations are detected in the C II doublet in the first epoch and in the O I triplet in all epochs with a different behavior that points toward intrinsic stellar variability. Further observations at FUV wavelengths are required to disentangle definitively between star-planet interactions in the 55 Cnc system and the activity of the star.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-energy spectra of LTT 1445A and GJ 486 reveal flares and activity;Astronomy & Astrophysics;2024-08-30

2. Super-Earths and Earth-like exoplanets;Reference Module in Earth Systems and Environmental Sciences;2024

3. Investigating the visible phase-curve variability of 55 Cnc e;Astronomy & Astrophysics;2023-09

4. Hydrodynamic Atmospheric Escape in HD 189733 b: Signatures of Carbon and Hydrogen Measured with the Hubble Space Telescope;The Astronomical Journal;2023-08-03

5. Outflowing Helium from a Mature Mini-Neptune;The Astrophysical Journal Letters;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3