Can cosmological simulations capture the diverse satellite populations of observed Milky Way analogues?

Author:

Font Andreea S1ORCID,McCarthy Ian G1ORCID,Belokurov Vasily2ORCID

Affiliation:

1. Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L53RF, UK

2. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

Abstract

ABSTRACT The recent advent of deep observational surveys of local Milky Way ‘analogues’ and their satellite populations allows us to place the Milky Way in a broader cosmological context and to test models of galaxy formation on small scales. In this study, we use the Lambda cold dark matter (ΛCDM)-based ARTEMIS suite of cosmological hydrodynamical simulations containing 45 Milky Way analogue host haloes to make comparisons to the observed satellite luminosity functions, radial distribution functions, and abundance scaling relations from the recent Local Volume and SAGA observational surveys, in addition to the Milky Way and M31. We find that, contrary to some previous claims, ΛCDM-based simulations can successfully and simultaneously capture the mean trends and the diversity in both the observed luminosity and radial distribution functions of Milky Way analogues once important observational selection criteria are factored in. Furthermore, we show that, at fixed halo mass, the concentration of the simulated satellite radial distribution is partly set by that of the underlying smooth dark matter halo, although stochasticity due to the finite number of satellites is the dominant driver of scatter in the radial distribution of satellites at fixed halo mass.

Funder

European Research Council

Department for Business, Energy & Industrial Strategy

Science and Technology Facilities Council

Durham University

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3