Differences in the properties of disrupted and surviving satellites of Milky-Way-mass galaxies in relation to their host accretion histories

Author:

Grimozzi Salvador E12,Font Andreea S3ORCID,De Rossi María Emilia12

Affiliation:

1. Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales , Buenos Aires , Argentina

2. CONICET-Universidad de Buenos Aires, Instituto de Astronomía y Física del Espacio (IAFE) , Buenos Aires, C1428ZAA Argentina

3. Astrophysics Research Institute, Liverpool John Moores University , 146 Brownlow Hill, Liverpool L3 5RF , UK

Abstract

ABSTRACT From the chemodynamical properties of tidal debris in the Milky Way, it has been inferred that the dwarf satellites that have been disrupted had different chemical abundances from their present-day counterparts of similar mass that survive today, specifically, they had lower [Fe/H] and higher [Mg/Fe]. Here we use the Artemis simulations to study the relation between the chemical abundances of disrupted progenitors of MW-mass galaxies and their stellar mass, and the evolution of the stellar mass–metallicity relations (MZR) of this population with redshift. We find that these relations have significant scatter, which correlates with the accretion redshifts (zacc) of satellites, and with their cold gas fractions. We investigate the MZRs of dwarf populations accreted at different redshifts and find that they have similar slopes, and also similar with the slope of the MZR of the surviving population (≈0.32). However, the entire population of disrupted dwarfs displays a steeper MZR, with a slope of ≈0.48, which can be explained by the changes in the mass spectrum of accreted dwarf galaxies with redshift. We find strong relations between the (mass-weighted) 〈zacc〉 of the disrupted populations and their global chemical abundances (〈[Fe/H]〉 and 〈[Mg/Fe]〉), which suggests that chemical diagnostics of disrupted dwarfs can be used to infer the types of merger histories of their hosts. For the case of the MW, our simulations predict that the bulk of the disrupted population was accreted at 〈zacc〉 ≈ 2, in agreement with other findings. We also find that disrupted satellites form and evolve in denser environments, closer to their hosts, than their present-day counterparts.

Funder

European Research Council

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3