GG Carinae: discovery of orbital-phase-dependent 1.583-day periodicities in the B[e] supergiant binary

Author:

Porter Augustus1ORCID,Blundell Katherine1,Podsiadlowski Philipp1,Lee Steven23

Affiliation:

1. Department of Physics, University of Oxford, Denys Wilkinson Building, Oxford OX1 3RH, UK

2. Anglo-Australian Telescope, Coonabarabran, NSW 2357, Australia

3. Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia

Abstract

ABSTRACT GG Carinae (GG Car) is a binary whose primary component is a B[e] supergiant. Using photometric data from the Transiting Exoplanet Survey Satellite (TESS), All Sky Automated Survey (ASAS), Optical Monitoring Camera (OMC), and All Sky Automated Survey for Supernovae (ASAS-SN), and spectroscopic data from the Global Jet Watch to study visible He i, Fe ii, and Si ii emission lines, we investigate the short-period variations that are exhibited in GG Car. We find a hitherto neglected periodicity of 1.583156 ± 0.0002 d that is present in both its photometry and the radial velocities of its emission lines, alongside variability at the well-established ∼31-d orbital period. We find that the amplitudes of the shorter period variations in both photometry and some of the emission lines are modulated by the orbital phase of the binary, such that the short-period variations have largest amplitudes when the binary is at periastron. There are no significant changes in the phases of the short-period variations over the orbital period. We investigate potential causes of the 1.583-d variability, and find that the observed period agrees well with the expected period of the l = 2 f-mode of the primary given its mass and radius. We propose that the primary is periodically pulled out of hydrostatic equilibrium by the quadrupolar tidal forces when the components are near periastron in the binary’s eccentric orbit (e = 0.5) and the primary almost fills its Roche lobe. This causes an oscillation at the l = 2 f-mode frequency that is damped as the distance between the components increases.

Funder

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3