Discovering New B[e] Supergiants and Candidate Luminous Blue Variables in Nearby Galaxies

Author:

Maravelias Grigoris12ORCID,de Wit Stephan13ORCID,Bonanos Alceste Z.1ORCID,Tramper Frank4ORCID,Munoz-Sanchez Gonzalo13ORCID,Christodoulou Evangelia13ORCID

Affiliation:

1. IAASARS, National Observatory of Athens, GR-15326 Penteli, Greece

2. Institute of Astrophysics FORTH, GR-71110 Heraklion, Greece

3. Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, GR-15784 Zografos, Greece

4. Institute of Astronomy, KU Leuven, Celestijnlaan 200D, 3001 Leuven, Belgium

Abstract

Mass loss is one of the key parameters that determine stellar evolution. Despite the progress we have achieved over the last decades we still cannot match the observational derived values with theoretical predictions. Even worse, there are certain phases, such as the B[e] supergiants (B[e]SGs) and the Luminous Blue Variables (LBVs), where significant mass is lost through episodic or outburst activity. This leads to various structures forming around them that permit dust formation, making these objects bright IR sources. The ASSESS project aims to determine the role of episodic mass in the evolution of massive stars, by examining large numbers of cool and hot objects (such as B[e]SGs/LBVs). For this purpose, we initiated a large observation campaign to obtain spectroscopic data for ∼1000 IR-selected sources in 27 nearby galaxies. Within this project we successfully identified seven B[e] supergiants (one candidate) and four Luminous Blue Variables of which six and two, respectively, are new discoveries. We used spectroscopic, photometric, and light curve information to better constrain the nature of the reported objects. We particularly noted the presence of B[e]SGs at metallicity environments as low as 0.14 Z⊙.

Funder

European Research Council

Publisher

MDPI AG

Subject

Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3