Fuzzy dark matter and the Dark Energy Survey Year 1 data

Author:

Dentler Mona1,Marsh David J E2ORCID,Hložek Renée34,Laguë Alex345ORCID,Rogers Keir K3,Grin Daniel6

Affiliation:

1. Institut für Astrophysik , Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany

2. Theoretical Particle Physics and Cosmology, King’s College London , Strand, London WC2R 2LS, UK

3. Dunlap Institute for Astronomy and Astrophysics, University of Toronto , 50 St George Street, Toronto, ON M5S 3H4, Canada

4. Department of Astronomy and Astrophysics, University of Toronto , 50 St George Street, Toronto, ON M5S 3H4, Canada

5. Canadian Institute for Theoretical Astrophysics, University of Toronto , 60 St George St, Toronto, ON M5S 3H8, Canada

6. Department of Physics and Astronomy, Haverford College , 370 Lancaster Avenue, Haverford, PA 19041, USA

Abstract

ABSTRACT Gravitational weak lensing by dark matter haloes leads to a measurable imprint in the shear correlation function of galaxies. Fuzzy dark matter (FDM), composed of ultralight axion-like particles of mass m ∼ 10−22 eV, suppresses the matter power spectrum and shear correlation with respect to standard cold dark matter. We model the effect of FDM on cosmic shear using the optimized halo model HMCode, accounting for additional suppression of the mass function and halo concentration in FDM as observed in N-body simulations. We combine Dark Energy Survey Year 1 (DES-Y1) data with the Planck cosmic microwave background anisotropies to search for shear correlation suppression caused by FDM. We find no evidence of suppression compared to the preferred cold dark matter model, and thus set a new lower limit to the FDM particle mass. Using a log-flat prior and marginalizing over uncertainties related to the non-linear model of FDM, we find a new, independent 95 per cent C.L. lower limit log10m > −23 combining Planck and DES-Y1 shear, an improvement of almost two orders of magnitude on the mass bound relative to CMB-only constraints. Our analysis is largely independent of baryonic modelling, and of previous limits to FDM covering this mass range. Our analysis highlights the most important aspects of the FDM non-linear model for future investigation. The limit to FDM from weak lensing could be improved by up to three orders of magnitude with $\mathcal {O}(0.1)$ arcmin cosmic shear angular resolution, if FDM and baryonic feedback can be simultaneously modelled to high precision in the halo model.

Funder

University of Göttingen

Alexander von Humboldt Foundation

Science and Technology Facilities Council

CIFAR

NSERC

Alfred P. Sloan Foundation

Connaught Fund

University of Toronto

NASA

U.S. Department of Energy

National Science Foundation

Higher Education Funding Council for England

National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign

University of Chicago

Ohio State University

Texas A&M University

Financiadora de Estudos e Projetos

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Ministério da Ciência, Tecnologia e Inovação

Deutsche Forschungsgemeinschaft

Argonne National Laboratory

University of California, Santa Cruz

University of Cambridge

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

University College London

University of Edinburgh

Eidgenössische Technische Hochschule Zürich

CSIC

Lawrence Berkeley National Laboratory

Ludwig-Maximilians-Universität München

University of Michigan

University of Nottingham

University of Pennsylvania

University of Portsmouth

SLAC National Accelerator Laboratory

Stanford University

University of Sussex

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3