Planck 2018 results

Author:

,Aghanim N.,Akrami Y.,Ashdown M.,Aumont J.,Baccigalupi C.,Ballardini M.,Banday A. J.,Barreiro R. B.,Bartolo N.,Basak S.,Benabed K.,Bernard J.-P.,Bersanelli M.,Bielewicz P.,Bock J. J.,Bond J. R.,Borrill J.,Bouchet F. R.,Boulanger F.,Bucher M.,Burigana C.,Butler R. C.,Calabrese E.,Cardoso J.-F.,Carron J.,Casaponsa B.,Challinor A.,Chiang H. C.,Colombo L. P. L.,Combet C.,Crill B. P.,Cuttaia F.,de Bernardis P.,de Rosa A.,de Zotti G.,Delabrouille J.,Delouis J.-M.,Di Valentino E.,Diego J. M.,Doré O.,Douspis M.,Ducout A.,Dupac X.,Dusini S.,Efstathiou G.,Elsner F.,Enßlin T. A.,Eriksen H. K.,Fantaye Y.,Fernandez-Cobos R.,Finelli F.,Frailis M.,Fraisse A. A.,Franceschi E.,Frolov A.,Galeotta S.,Galli S.,Ganga K.,Génova-Santos R. T.,Gerbino M.,Ghosh T.,Giraud-Héraud Y.,González-Nuevo J.,Górski K. M.,Gratton S.,Gruppuso A.,Gudmundsson J. E.,Hamann J.,Handley W.,Hansen F. K.,Herranz D.,Hivon E.,Huang Z.,Jaffe A. H.,Jones W. C.,Keihänen E.,Keskitalo R.,Kiiveri K.,Kim J.,Kisner T. S.,Krachmalnicoff N.,Kunz M.,Kurki-Suonio H.,Lagache G.,Lamarre J.-M.,Lasenby A.,Lattanzi M.,Lawrence C. R.,Le Jeune M.,Levrier F.,Lewis A.,Liguori M.,Lilje P. B.,Lilley M.,Lindholm V.,López-Caniego M.,Lubin P. M.,Ma Y.-Z.,Macías-Pérez J. F.,Maggio G.,Maino D.,Mandolesi N.,Mangilli A.,Marcos-Caballero A.,Maris M.,Martin P. G.,Martínez-González E.,Matarrese S.,Mauri N.,McEwen J. D.,Meinhold P. R.,Melchiorri A.,Mennella A.,Migliaccio M.,Millea M.,Miville-Deschênes M.-A.,Molinari D.,Moneti A.,Montier L.,Morgante G.,Moss A.,Natoli P.,Nørgaard-Nielsen H. U.,Pagano L.,Paoletti D.,Partridge B.,Patanchon G.,Peiris H. V.,Perrotta F.,Pettorino V.,Piacentini F.,Polenta G.,Puget J.-L.,Rachen J. P.,Reinecke M.,Remazeilles M.,Renzi A.,Rocha G.,Rosset C.,Roudier G.,Rubiño-Martín J. A.,Ruiz-Granados B.,Salvati L.,Sandri M.,Savelainen M.,Scott D.,Shellard E. P. S.,Sirignano C.,Sirri G.,Spencer L. D.,Sunyaev R.,Suur-Uski A.-S.,Tauber J. A.,Tavagnacco D.,Tenti M.,Toffolatti L.,Tomasi M.,Trombetti T.,Valiviita J.,Van Tent B.,Vielva P.,Villa F.,Vittorio N.,Wandelt B. D.,Wehus I. K.,Zacchei A.,Zonca A.

Abstract

We describe the legacy Planck cosmic microwave background (CMB) likelihoods derived from the 2018 data release. The overall approach is similar in spirit to the one retained for the 2013 and 2015 data release, with a hybrid method using different approximations at low ( <  30) and high ( ≥ 30) multipoles, implementing several methodological and data-analysis refinements compared to previous releases. With more realistic simulations, and better correction and modelling of systematic effects, we can now make full use of the CMB polarization observed in the High Frequency Instrument (HFI) channels. The low-multipole EE cross-spectra from the 100 GHz and 143 GHz data give a constraint on the ΛCDM reionization optical-depth parameter τ to better than 15% (in combination with the TT low- data and the high- temperature and polarization data), tightening constraints on all parameters with posterior distributions correlated with τ. We also update the weaker constraint on τ from the joint TEB likelihood using the Low Frequency Instrument (LFI) channels, which was used in 2015 as part of our baseline analysis. At higher multipoles, the CMB temperature spectrum and likelihood are very similar to previous releases. A better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (i.e., the polarization efficiencies) allow us to make full use of polarization spectra, improving the ΛCDM constraints on the parameters θMC, ωc, ωb, and H0 by more than 30%, and ns by more than 20% compared to TT-only constraints. Extensive tests on the robustness of the modelling of the polarization data demonstrate good consistency, with some residual modelling uncertainties. At high multipoles, we are now limited mainly by the accuracy of the polarization efficiency modelling. Using our various tests, simulations, and comparison between different high-multipole likelihood implementations, we estimate the consistency of the results to be better than the 0.5 σ level on the ΛCDM parameters, as well as classical single-parameter extensions for the joint likelihood (to be compared to the 0.3 σ levels we achieved in 2015 for the temperature data alone on ΛCDM only). Minor curiosities already present in the previous releases remain, such as the differences between the best-fit ΛCDM parameters for the  <  800 and  >  800 ranges of the power spectrum, or the preference for more smoothing of the power-spectrum peaks than predicted in ΛCDM fits. These are shown to be driven by the temperature power spectrum and are not significantly modified by the inclusion of the polarization data. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 550 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3