A panchromatic view of star cluster formation in a simulated dwarf galaxy starburst

Author:

Lahén Natalia1ORCID,Naab Thorsten1ORCID,Kauffmann Guinevere1

Affiliation:

1. Max Planck Institute for Astrophysics , Karl-Schwarzschild-Straβe 1, D-85741 Garching, Germany

Abstract

ABSTRACT We present a photometric analysis of star and star cluster (SC) formation in a high-resolution simulation of a dwarf galaxy starburst that allows the formation of individual stars to be followed. Previous work demonstrated that the properties of the SCs formed in the simulation are in good agreement with observations. In this paper, we create mock spectral energy distributions and broad-band photometric images using the radiative transfer code skirt 9. We test several observational star formation rate (SFR) tracers and find that 24 $\mu$m, total infrared and Hα trace the underlying SFR during the (post)starburst phase, while UV tracers yield a more accurate picture of star formation during quiescent phases prior to and after the merger. We then place the simulated galaxy at distances of 10 and 50 Mpc and use aperture photometry at Hubble Space Telescope resolution to analyse the simulated SC population. During the starburst phase, a hierarchically forming set of SCs leads inaccurate source separation because of crowding. This results in estimated SC mass function slopes that are up to ∼0.3 shallower than the true slope of ∼−1.9 to −2 found for the bound clusters identified from the particle data in the simulation. The masses of the largest clusters are overestimated by a factor of up to 2.9 due to unresolved clusters within the apertures. The aperture-based analysis also produces a relation between cluster formation efficiency and SFR surface density that is slightly flatter than that recovered from bound clusters. The differences are strongest in quiescent SF environments.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3