Formation of star clusters and enrichment by massive stars in simulations of low-metallicity galaxies with a fully sampled initial stellar mass function

Author:

Lahén Natalia1ORCID,Naab Thorsten1ORCID,Kauffmann Guinevere1,Szécsi Dorottya2ORCID,Hislop Jessica May13ORCID,Rantala Antti1ORCID,Kozyreva Alexandra4ORCID,Walch Stefanie5,Hu Chia-Yu67ORCID

Affiliation:

1. Max-Planck-Institute für Astrophysik , Karl-Schwarzschild-Straβe 1, D-85740 Garching , Germany

2. Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University , Grudziądzka 5, 87-100 Toruń , Poland

3. Department of Physics, University of Helsinki , Gustaf Hällströmin katu 2, FI-00014, Helsinki , Finland

4. Heidelberger Institut für Theoretische Studien , Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg , Germany

5. I. Physikalisches Institut, Universitat zu Köln , Zülpicher Str 77, D-50937 Köln , Germany

6. Max-Planck-Institut für Extraterrestrische Physik , Giessenbachstrasse 1, D-85748 Garching , Germany

7. Department of Astronomy, University of Florida , 211 Bryant Space Science Center, Gainesville, FL 32611 , USA

Abstract

ABSTRACT We present new griffin project hydrodynamical simulations that model the formation of galactic star cluster populations in low-metallicity (Z = 0.00021) dwarf galaxies, including radiation, supernova, and stellar wind feedback of individual massive stars. In the simulations, stars are sampled from the stellar initial mass function (IMF) down to the hydrogen-burning limit of 0.08 M⊙. Mass conservation is enforced within a radius of 1 pc for the formation of massive stars. We find that massive stars are preferentially found in star clusters and follow a correlation set at birth between the highest initial stellar mass and the star cluster mass that differs from pure stochastic IMF sampling. With a fully sampled IMF, star clusters lose mass in the galactic tidal field according to mass-loss rates observed in nearby galaxies. Of the released stellar feedback, 60 per cent of the supernova material and up to 35 per cent of the wind material reside either in the hot interstellar medium (ISM) or in gaseous, metal-enriched outflows. While stellar winds (instantaneously) and supernovae (delayed) start enriching the ISM right after the first massive stars form, the formation of supernova-enriched stars and star clusters is significantly delayed (by >50 Myr) compared to the formation of stars and star clusters enriched by stellar winds. Overall, supernova ejecta dominate the enrichment by mass, while the number of enriched stars is determined by continuous stellar winds. These results present a concept for the formation of chemically distinct populations of stars in bound star clusters, reminiscent of multiple populations in globular clusters.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3