The occurrence rate of giant planets orbiting low-mass stars withTESS

Author:

Bryant Edward M123ORCID,Bayliss Daniel23ORCID,Van Eylen Vincent1ORCID

Affiliation:

1. Mullard Space Science Laboratory, University College London , Holmbury St Mary, Dorking, Surrey RH5 6NT , UK

2. Department of Physics, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL , UK

3. Centre for Exoplanets and Habitability, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL , UK

Abstract

ABSTRACTWe present a systematic search for transiting giant planets ($0.6 \mbox{$R_{\rm J}$}\le \mbox{$R_{\rm P}$}\le 2.0 \mbox{$R_{\rm J}$}$) orbiting nearby low-mass stars ($\mbox{$M_{*}$}\le 0.71 \mbox{${\rm M}_{\odot }$}$). The formation of giant planets around low-mass stars is predicted to be rare by the core-accretion planet formation theory. We search 91 306 low-mass stars in the TESS 30 min cadence photometry detecting fifteen giant planet candidates, including seven new planet candidates which were not known planets or identified as TOIs prior to our search. Our candidates present an exciting opportunity to improve our knowledge of the giant planet population around the lowest mass stars. We perform planet injection-recovery simulations and find that our pipeline has a high detection efficiency across the majority of our targeted parameter space. We measure the occurrence rates of giant planets with host stars in different stellar mass ranges spanning our full sample. We find occurrence rates of 0.137 ± 0.097  per cent (0.088–0.26 M⊙), 0.108 ± 0.083 per cent (0.26–0.42 M⊙), and 0.29 ± 0.15 per cent (0.42–0.71 M⊙). For our full sample (0.088–0.71 M⊙), we find a giant planet occurrence rate of 0.194 ± 0.072 per cent. We have measured for the first time the occurrence rate for giant planets orbiting stars with $\mbox{$M_{*}$}\le 0.4\, \mbox{${\rm M}_{\odot }$}$ and we demonstrate this occurrence rate to be non-zero. This result contradicts currently accepted planet formation models and we discuss some possibilities for how these planets could have formed.

Funder

STFC

STScI

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3