Constraining the oblateness of transiting planets with photometry and spectroscopy

Author:

Akinsanmi B123ORCID,Barros S C C1,Santos N C12,Oshagh M145,Serrano L M6ORCID

Affiliation:

1. Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, P-4150-762 Porto, Portugal

2. Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, P-4169-007 Porto, Portugal

3. National Space Research and Development Agency, Airport Road, 900107 Abuja, Nigeria

4. Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany

5. Instituto de Astrofísica de Canarias (IAC), E-38200 La Laguna, Tenerife, Spain

6. Dipartimento di Fisica, Universita degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino, Italy

Abstract

ABSTRACT Rapid planetary rotation can cause the equilibrium shape of a planet to be oblate. While planetary oblateness has mostly been probed by examining the subtle ingress and egress features in photometric transit light curves, we investigate the effect of oblateness on the spectroscopic Rossiter–McLaughlin (RM) signals. We found that a giant planet, with planet-to-star radius ratio of 0.15 and Saturn-like oblateness of 0.098, can cause spectroscopic signatures with amplitudes up to 1.1 m s−1 which is detectable by high-precision spectrographs such as ESPRESSO. We also found that the spectroscopic oblateness signals are particularly amplified for transits across rapidly rotating stars and for planets with spin-orbit misalignment thereby making them more prominent than the photometric signals at some transit orientations. We compared the detectability of oblateness in photometry and spectroscopy and found that photometric light curves are more sensitive to detecting oblateness than the spectroscopic RM signals mostly because they can be sampled with higher cadence to better probe the oblateness ingress and egress anomaly. However, joint analyses of the light curve and RM signal of a transiting planet provides more accurate and precise estimate of the planet’s oblateness. Therefore, ESPRESSO alongside ongoing and upcoming photometric instruments such as TESS, CHEOPS, PLATO, and JWST will be extremely useful in measuring planet oblateness.

Funder

Fundação para a Ciência e a Tecnologia

Federación Española de Enfermedades Raras

Fuel Cycle Technologies

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GASTLI;Astronomy & Astrophysics;2024-08

2. On the Effects of Planetary Oblateness on Exoplanet Studies;The Astrophysical Journal;2022-08-01

3. Planetary core radii: from Plato towards PLATO;Geophysical Exploration of the Solar System;2022

4. Boundary Layer Circumplanetary Accretion: How Fast Could an Unmagnetized Planet Spin Up through Its Disk?;The Astrophysical Journal;2021-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3