Deep radio-interferometric imaging with POLISH: DSA-2000 and weak lensing

Author:

Connor Liam1ORCID,Bouman Katherine L12,Ravi Vikram1,Hallinan Gregg1

Affiliation:

1. Cahill Center for Astronomy and Astrophysics, California Institute of Technology , MC 249-17, Pasadena, CA 91125, USA

2. Computing and Mathematical Sciences (CMS), Department of Electrical Engineering, California Institute of Technology , MC 249-17, Pasadena, CA 91125, USA

Abstract

ABSTRACT Radio interferometry allows astronomers to probe small spatial scales that are often inaccessible with single-dish instruments. However, recovering the radio sky from an interferometer is an ill-posed deconvolution problem that astronomers have worked on for half a century. More challenging still is achieving resolution below the array’s diffraction limit, known as superresolution imaging. To this end, we have developed a new learning-based approach for radio interferometric imaging, leveraging recent advances in the classical computer vision problems of single-image superresolution and deconvolution. We have developed and trained a high-dynamic range residual neural network to learn the mapping between the dirty image and the true radio sky. We call this procedure POLISH, in contrast to the traditional CLEAN algorithm. The feed-forward nature of learning-based approaches like POLISH is critical for analysing data from the upcoming Deep Synoptic Array (DSA-2000). We show that POLISH achieves superresolution, and we demonstrate its ability to deconvolve real observations from the Very Large Array. Superresolution on DSA-2000 will allow us to measure the shapes and orientations of several hundred million star-forming radio galaxies (SFGs), making it a powerful cosmological weak lensing survey and probe of dark energy. We forecast its ability to constrain the lensing power spectrum, finding that it will be complementary to next-generation optical surveys such as Euclid.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Regularization Methods in the Sky Map Reconstruction of the Tianlai Cylinder Pathfinder Array;Research in Astronomy and Astrophysics;2024-01-23

2. New Insights from Imaging Spectroscopy of Solar Radio Emission;Annual Review of Astronomy and Astrophysics;2023-08-18

3. Deep Network Series for Large-Scale High-Dynamic Range Imaging;ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2023-06-04

4. Radio astronomical images object detection and segmentation: a benchmark on deep learning methods;Experimental Astronomy;2023-05-05

5. 3D Detection of ALMA Sources Through Deep Learning;Communications in Computer and Information Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3