Square Kilometre Array Science Data Challenge 1: analysis and results

Author:

Bonaldi A12ORCID,An T3ORCID,Brüggen M4ORCID,Burkutean S5ORCID,Coelho B6,Goodarzi H7,Hartley P1,Sandhu P K8,Wu C9,Yu L10,Zhoolideh Haghighi M H7ORCID,Antón S611,Bagheri Z712,Barbosa D6,Barraca J P613,Bartashevich D6,Bergano M6,Bonato M5ORCID,Brand J5ORCID,de Gasperin F4,Giannetti A5,Dodson R9,Jain P8,Jaiswal S3ORCID,Lao B3,Liu B10ORCID,Liuzzo E5,Lu Y3,Lukic V4,Maia D14,Marchili N5,Massardi M5,Mohan P3ORCID,Morgado J B14,Panwar M8,Prabhakar P8,Ribeiro V A R M615ORCID,Rygl K L J5,Sabz Ali V7,Saremi E7,Schisano E16ORCID,Sheikhnezami S177ORCID,Vafaei Sadr A1819,Wong A20,Wong O I92122

Affiliation:

1. SKA Organization, Jodrell Bank, Lower Whitington, Macclesfield SK11 9FT, UK

2. Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK

3. Shanghai Astronomical Observatory, Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China

4. Hamburger Sternwarte, University of Hamburg, Gojenbergsweg 112, D-21029 Hamburg, Germany

5. INAF, Istituto di Radioastronomia, Italian ALMA Regional Centre, Via P. Gobetti 101, Bologna 40129, Italy

6. Instituto de Telecomunicações, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal

7. School of Astronomy, Institute for Research in Fundamental Sciences (IPM), PO Box 1956836613, Tehran, Iran

8. Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India

9. ICRAR-M468, UWA, 35 Stirling Hwy, Crawley, WA 6009, Australia

10. CAS Key Laboratory of FAST, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

11. CIDMA, Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal

12. Research Institute for Astronomy and Astrophysics of Maraghe, 55177-36698 Maraghe, Iran

13. Universidade de Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal

14. CICGE, Faculdade de Ciências da Universidade do Porto, Observatôrio Astronômico, Alameda do Monte da Virgem, P-4430-146 Vila Nova de Gaia, Portugal

15. Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal

16. INAF–IAPS, Via Fosso del Cavaliere 100, Rome 00133, Italy

17. Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), PO Box 11365-9161, Zanjan, Iran

18. Departement de Physique Theorique and Center for Astroparticle Physics, University of Geneva,1205, Switzerland

19. School of Physics, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5531, Tehran, Iran

20. Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON Canada N2L 3G1, Canada

21. ARC Centre of Excellence for Astrophysics in Three Dimensions (ASTRO 3D), Australia

22. CSIRO Astronomy and Space Science, PO Box 1130, Bentley, WA 6102, Australia

Abstract

ABSTRACT As the largest radio telescope in the world, the Square Kilometre Array (SKA) will lead the next generation of radio astronomy. The feats of engineering required to construct the telescope array will be matched only by the techniques developed to exploit the rich scientific value of the data. To drive forward the development of efficient and accurate analysis methods, we are designing a series of data challenges that will provide the scientific community with high-quality data sets for testing and evaluating new techniques. In this paper, we present a description and results from the first such Science Data Challenge 1 (SDC1). Based on SKA MID continuum simulated observations and covering three frequencies (560, 1400, and 9200 MHz) at three depths (8, 100, and 1000 h), SDC1 asked participants to apply source detection, characterization, and classification methods to simulated data. The challenge opened in 2018 November, with nine teams submitting results by the deadline of 2019 April. In this work, we analyse the results for eight of those teams, showcasing the variety of approaches that can be successfully used to find, characterize, and classify sources in a deep, crowded field. The results also demonstrate the importance of building domain knowledge and expertise on this kind of analysis to obtain the best performance. As high-resolution observations begin revealing the true complexity of the sky, one of the outstanding challenges emerging from this analysis is the ability to deal with highly resolved and complex sources as effectively as the unresolved source population.

Funder

Programa Operacional Temático Factores de Competitividade

Fuel Cell Technologies Program

Ministério da Ciência, Tecnologia e Ensino Superior

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3