Formation of planetary populations − II. Effects of initial disc size and radial dust drift

Author:

Alessi Matthew1,Pudritz Ralph E12,Cridland Alex J3

Affiliation:

1. Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada

2. Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada

3. Leiden Observatory, Leiden University, NL-300 RA Leiden, the Netherlands

Abstract

ABSTRACT Recent ALMA observations indicate that while a range of disc sizes exist, typical disc radii are small, and that radial dust drift affects the distribution of solids in discs. Here, we explore the consequences of these features in planet population synthesis models. A key feature of our model is planet traps – barriers to otherwise rapid type-I migration of forming planets – for which we include the ice line, heat transition, and outer edge of the dead zone. We find that the ice line plays a fundamental role in the formation of warm Jupiters. In particular, the ratio of super Earths to warm Jupiters formed at the ice line depends sensitively on the initial disc radius. Initial gas disc radii of ∼50 au results in the largest super Earth populations, while both larger and smaller disc sizes result in the ice line producing more gas giants near 1 au. This transition between typical planet class formed at the ice line at various disc radii confirms that planet formation is fundamentally linked to disc properties (in this case, disc size), and is a result that is only seen when dust evolution effects are included in our models. Additionally, we find that including radial dust drift results in the formation of more super Earths between 0.1 and 1 au, having shorter orbital radii than those produced in models where dust evolution effects are not included.

Funder

NSERC

ERC

NOVA

KNAW

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Populating the Milky Way;Astronomy & Astrophysics;2024-06

2. Planetary population synthesis and the emergence of four classes of planetary system architectures;The European Physical Journal Plus;2023-02-27

3. How drifting and evaporating pebbles shape giant planets;Astronomy & Astrophysics;2022-09

4. Combined effects of disc winds and turbulence-driven accretion on planet populations;Monthly Notices of the Royal Astronomical Society;2022-06-28

5. The New Generation Planetary Population Synthesis (NGPPS);Astronomy & Astrophysics;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3